

E-ISSN: 2708-4523
P-ISSN: 2708-4515
Impact Factor (RJIF): 5.61
AJMC 2026; 7(2): 81-83
© 2026 AJMC
www.allcommercejournal.com
Received: 05-12-2025
Accepted: 07-01-2026

Dr. Anurita Gautam
Associate Professor, Swayam
Siddhi College of Management
& Research, Maharashtra,
India

Khan Kashish Mehboob
Student-FYMMMS, Swayam
Siddhi College of Management
& Research, Maharashtra,
India

Curriculum Innovation for Industry 4.0 And 5.0: Transforming Higher Education for the Future Workforce

Anurita Gautam and Khan Kashish Mehboob

DOI: <https://www.doi.org/10.22271/27084515.2026.v7.i2b.1009>

Abstract

The rapid evolution of Industry 4.0 and the emerging paradigm of Industry 5.0 have profoundly reshaped workforce requirements, emphasizing digital competence, human-machine collaboration, sustainability, and ethical responsibility. Traditional higher education curricula often lag behind these dynamic industrial transformations, creating a widening skills gap. This research paper examines the necessity, scope, and impact of curriculum innovation in higher education to align learning outcomes with Industry 4.0 and 5.0 demands. Using a conceptual and analytical approach grounded in existing literature, the study explores emerging competencies, pedagogical transformations, and institutional strategies. An integrated curriculum innovation framework is proposed, combining technological, human-centric, and sustainability dimensions. The study concludes that adaptive, interdisciplinary, and industry-aligned curricula are essential for preparing a future-ready workforce and ensuring higher education remains relevant in a rapidly changing global economy.

Keywords: Industry 4.0, Industry 5.0, Curriculum Innovation, Higher Education, Future Workforce, Digital Skills

Introduction

The global economy is undergoing a fundamental transformation driven by digitalization, automation, artificial intelligence (AI), and cyber-physical systems, collectively referred to as Industry 4.0. More recently, Industry 5.0 has emerged as a complementary paradigm emphasizing human-centricity, resilience, sustainability, and ethical innovation. These shifts redefine how work is organized, how value is created, and what skills are required.

Higher education institutions (HEIs) play a pivotal role in preparing graduates for this evolving labor market. However, conventional curricula—often discipline-specific, content-heavy, and slow to adapt—are increasingly misaligned with industry needs. Curriculum innovation has therefore become a strategic imperative, requiring a rethinking of learning objectives, pedagogical approaches, assessment methods, and industry engagement.

This paper investigates how curriculum innovation can transform higher education to meet the demands of Industry 4.0 and 5.0, ensuring graduates possess not only technical expertise but also creativity, ethical awareness, and adaptability.

Objectives of the Study

The primary objectives of this research are to:

Examine the key characteristics and skill requirements of Industry 4.0 and Industry 5.0.

- Analyze existing literature on curriculum innovation in higher education.
- Identify gaps between current higher education curricula and future workforce demands.
- Propose an integrated curriculum innovation framework aligned with Industry 4.0 and 5.0.
- Assess the implications of curriculum innovation for educators, institutions, and policymakers.

Literature Review

Industry 4.0 and Workforce Transformation

Industry 4.0 is characterized by smart factories, IoT, AI, big data analytics, robotics, and

Corresponding Author:
Dr. Anurita Gautam
Associate Professor, Swayam
Siddhi College of Management
& Research, Maharashtra,
India

automation. Studies highlight the increasing demand for skills such as data literacy, systems thinking, programming, and digital problem-solving (Schwab, 2016; Lasi *et al.*, 2014) [5, 4].

Emergence of Industry 5.0

Industry 5.0 shifts the focus from pure efficiency to human well-being, sustainability, and social value. According to the European Commission (2021) [3], it emphasizes human-machine collaboration, ethical AI, and environmental responsibility, requiring competencies beyond technical expertise.

Curriculum Innovation in Higher Education

Curriculum innovation involves redesigning content, pedagogy, and assessment to improve relevance and learning outcomes. Research suggests interdisciplinary learning, experiential education, project-based learning, and digital platforms as critical enablers (Barnett, 2018; Biggs & Tang, 2011) [1, 2].

Skill Gaps and Employability

Multiple studies indicate a mismatch between graduate skills and employer expectations, particularly in critical thinking, creativity, collaboration, and adaptability (World Economic Forum, 2020). This gap underscores the urgency for curriculum reform.

Research Methodology

This study adopts a qualitative, conceptual research methodology, relying on:

- Systematic review of peer-reviewed journals, policy reports, and academic books.
- Comparative analysis of Industry 4.0 and 5.0 competency frameworks.
- Synthesis of best practices in curriculum design and higher education innovation.
- The methodology is exploratory and analytical, aimed at theory-building rather than empirical testing.

Hypotheses

Based on the literature, the study proposes the following hypotheses:

- **H1:** Curriculum innovation aligned with Industry 4.0 and 5.0 significantly enhances graduate employability.
- **H2:** Interdisciplinary and experiential learning approaches are more effective than traditional discipline-based curricula.
- **H3:** Human-centric and sustainability-oriented curriculum elements improve long-term workforce adaptability.

Analysis

The analysis reveals three major dimensions of curriculum innovation:

- Technological Dimension: Integration of AI, data analytics, IoT, and digital tools across disciplines.
- Pedagogical Dimension: Shift from lecture-based teaching to active, project-based, and problem-based learning.
- Human-Centric Dimension: Emphasis on ethics, emotional intelligence, creativity, and lifelong learning.
- Institutions that align curricula with these dimensions

demonstrate higher graduate readiness and stronger industry collaboration.

Discussion

The findings suggest that curriculum innovation is not merely a content update but a systemic transformation. Faculty development, institutional leadership, and policy support are critical success factors. Industry 5.0 further expands the role of higher education from skill production to holistic human development.

Challenges include resistance to change, lack of infrastructure, and limited industry-academia collaboration. Addressing these barriers requires strategic planning, stakeholder engagement, and continuous curriculum review mechanisms.

Integrated Curriculum Innovation Framework

Proposed Framework Components:

- Core Knowledge Layer
- Digital technologies (AI, IoT, robotics)
- Sustainability and ethics
- Skill Development Layer
- Technical skills
- Soft skills (creativity, collaboration, leadership)
- Pedagogical Layer
- Project-based learning
- Industry internships
- Virtual and blended learning
- Ecosystem Layer
- Industry partnerships
- Lifelong learning platforms
- Policy and accreditation
- alignment

This integrated framework ensures alignment with both Industry 4.0 efficiency goals and Industry 5.0 human-centric values.

Conclusion

Curriculum innovation is essential for transforming higher education in the era of Industry 4.0 and 5.0. The study concludes that future-ready curricula must be interdisciplinary, technology-enabled, human-centric, and sustainability-oriented. By adopting integrated curriculum frameworks and fostering strong industry collaboration, higher education institutions can bridge the skills gap and empower graduates to thrive in an uncertain and rapidly evolving world of work.

References

1. Barnett R. *The ecological university: A feasible utopia*. London: Routledge; 2018.
2. Biggs J, Tang C. *Teaching for quality learning at university*. 4th ed. Maidenhead: Open University Press; 2011.
3. European Commission. *Industry 5.0: Towards a sustainable, human-centric and resilient European industry*. Brussels: European Commission; 2021.
4. Lasi H, Fettke P, Kemper HG, Feld T, Hoffmann M. *Industry 4.0. Business & Information Systems Engineering*. 2014;6(4):239–242.
5. Schwab K. *The fourth industrial revolution*. Geneva: World Economic Forum; 2016.

6. World Economic Forum. The future of jobs report. Geneva: World Economic Forum; 2020.
7. Hecklau F, Galeitzke M, Flachs S, Kohl H. Holistic approach for human resource management in Industry 4.0. *Procedia CIRP*. 2016;54:1–6.
8. Puncreobutr V. Education 4.0: New challenge of learning. *St. Theresa Journal of Humanities and Social Sciences*. 2016;2(2):92–97.
9. Flores E, Xu X, Lu Y. Human–cyber–physical systems: A skill-based framework for Industry 4.0 workforce. *Journal of Manufacturing Systems*. 2020;55:65–76.
10. Salas-Pilco SZ, Yang Y, Zhang Z. Student engagement in higher education: A systematic review. *Educational Research Review*. 2022;35:100420.
11. Organisation for Economic Co-operation and Development. *OECD future of education and skills 2030*. Paris: OECD Publishing; 2019.
12. UNESCO. Rethinking education: Towards a global common good? Paris: UNESCO Publishing; 2015.
13. McGunagle D, Zizka L. Employability skills for 21st-century STEM students. *Higher Education, Skills and Work-Based Learning*. 2020;10(3):591–606.
14. Pillai S, Sivathanu B. Adoption of Industry 4.0 technologies in Indian manufacturing firms. *Benchmarking: An International Journal*. 2020;27(6):1657–1676.
15. de Wit H, Altbach PG. Internationalization in higher education: Global trends. *International Higher Education*. 2021;104:6–8.
16. Bakhshi H, Downing JM, Osborne MA, Schneider P. *The future of skills: Employment in 2030*. London: Pearson & Nesta; 2017.
17. Marginson S. Higher education, economic inequality and social mobility. *Oxford Review of Education*. 2018;44(4):457–473.
18. Ministry of Education. *National education policy 2020*. New Delhi: Government of India; 2020.
19. Savić D. COVID-19 and work from home: Digital transformation of higher education. *Applied System Innovation*. 2020;3(2):1–10.
20. Demartini M, Benussi L. Do Web 4.0 and Industry 4.0 imply Education X.0? *IT Professional*. 2017;19(3):4–7.