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Abstract 
The cutting and packing problem (C&P) is a class of optimization problems that substantially affect 
resource efficiency in manufacturing and various industries. This review paper comprehensively 
surveys the state-of-the-art cutting and packing problems (C&P) and their different types and 
typologies. We explore these challenges' historical evolution and variants, particularly the two-
dimensional cutting stock problems. We offer insights into the critical problem formulations and 
mathematical approaches shaping the field. Additionally, the paper concludes with a discussion of 
emerging trends, challenges, and potential avenues for future research in the cutting and packing 
optimization problem. 
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Introduction 
The cutting and packing problems are combinatorial optimization problems (Where the set of 
feasible solutions is a discrete combinatorial set) at the intersection of mathematical 
optimization and industrial efficiency. They belong to the class NP [54] and have shown that 
they are NP-hard in the strong sense. This complex problem arises in industries such as 
textile, paper, glass, and marble. 
Over the years, the cutting and packing problems have garnered significant attention from 
researchers and practitioners alike. Mathematical formulations, heuristic approaches, and 
optimization algorithms have been developed to tackle the intricacies of these problems, 
offering solutions that balance computational efficiency with real-world applicability. 
This paper explores the historical evolution of cutting and packing problems, their various 
types, and the methodologies employed to address their challenges. By understanding the 
foundations and advancements in this field, we aim to provide valuable insights into the past, 
present, and future of cutting stock problems. The remainder of the paper is organized as 
follows: In Section 2, the definition, the relationship, the differences, and the classification of 
these problems are described. Section 3 gives a detailed review of related works from the 
literature. A plethora of optimization techniques to tackle the cutting and packing problems, 
from classic algorithms to more recent metaheuristic approaches, are provided in Section 4. 
Finally, some conclusions are drawn, including a discussion of new trends, problems, and 
prospective future research directions in the cutting and packing problems. 
 
A general overview of the cutting and packing problems 
Definition & Classification 
The cutting and packing problems are mathematical optimization problems. They were first 
studied by [50], who aimed to model them suitably [36]. Carried on with this work to solve 
some of its variants and generalize it to two-dimensional cutting problems. 
It consists in determining how, in a "material" of given dimensions, to cut (Or arrange) a 
maximum number of elements of smaller dimensions and, again, how to cut (Or arrange) a 
given number of elements in such a way as to use a minimum quantity of the primary 
"material." 
It can also correspond to placing a set of small objects (Items) in a set of large objects (Bags 
or bins) in such a way that the total surface used is the smallest possible or that the total 
profit of the placed objects is within the maximum claimed in the problem formulation. It 
can be defined by finding the best assortment of small objects (Items) in large objects (Bins) 
that minimize material waste while satisfying all problem constraints. 
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To describe the varieties of the cutting and packaging 
problem and to define the constraints for each type of 
problem, it is required to go through a classification, which 
not only standardizes the definitions and notations but also 
facilitates communication between researchers in this 
domain. The classification of cutting and packing problems 
is further specified by several typologies that offer a good 
tool for organizing and categorizing the existing literature 
[24]. 
Introduces the first typology. This typology considers four 
parameters with different possible cases that identify 96 
problems.  
 The first parameter is used to identify the dimension of 

the problem.  
 The second parameter informs about the type of 

assignment, i.e., whether all components should be 
placed inside the container(s) or only a part should be 
positioned. In the first case, the problem is a 
minimization performed on the containers (size or 
number). In the second case, a maximization is 
performed on the components to be positioned. 
Concretely, it will be a question of maximizing the used 
space or a profit function by selecting a subset of the 
components.  

 The third parameter provides information about the 
type of container.  

 The fourth parameter contains information on the 
nature of the components, i.e., whether they are 
identical, slightly different, or strongly different. 

 
Table 1: Classification proposed by Dyckhoff [24] 

 

Dimension of the problem Assignment types Nature of the containers Nature of the components 
1: One-dimensional problem; 
2: Two-dimensional problem; 

3: Three-dimensional problem; 
N: Multi-dimensional problem 

with N > 3. 

B: All containers and a few 
components; 

V: A set of containers and all 
components. 

O: One single container; 
I: Several identical 

containers; 
D: Several different 

containers. 

F: Some components; 
M: Many components which are different 

from each other; 
R: Many components are quite similar to 

each other; C: Identical components. 
 

 
 

Fig 1: The phenomenology of cutting and packaging problems proposed by Dyckhoff [24]. 
 

 
Then, in 1992 [25] as well [23] provided an overview of 
cutting and packing problems, and in 1997 [26] published an 
annotated bibliography of cutting and packing problems. 
In addition, other authors [42] and [56] have presented specific 
typologies for the two-dimension cutting problems. 
However, over time and recent developments [65] have been 
inspired by Dyckoff's [24] typology, a new classification 
adapted to the evolution of the cutting and packing 
problems. 
From this improved classification, the main types of 
problems (Cutting and packing) have been defined, which 

are developed by the combination of the following 
characteristics: 
 The objective of the problem, i.e., a maximization of 

the components or minimization to be performed on the 
container.  

 The second and third characteristics concern the 
container's geometry and the components.  

 
From these three characteristics, various types of problems 
are established. Each of these problems can be refined based 
on the specificities of each problem. 
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Fig 2: Classification according to Wäscher et al., [56]. 
 

Relation between Cutting and Packing problems 
According to [24], the relationship between cutting and 
packing problems can be explained as follows:  
The cutting problems can be considered as placing elements 
in large objects (plates or strips). Similarly, packing 
problems can be considered as cutting problems. This is 
where the compound term "Cutting and Packing" came 
from. 
Further, [29] explained that this strong relationship between 
the C & P problems results from the duality of a material 
body and its space. Indeed, packing a list of boxes into a 
container is the same as cutting the container's space, 
producing pieces where it is possible to place the boxes. 
Conversely, cutting a sheet of material to obtain smaller 
items is the same as packing the items into the sheet. 
 
The most known variants of these problems are 
mentioned below 
The Knapsack problem: This problem models a situation 
analogous to filling a Knapsack, which cannot support more 
than a certain weight, with all or part of a given set of 
objects, each having a weight and a value. 
 
Two types of this problem can be distinguished  
 The unidimensional-Knapsack where the problem 

consists of selecting a set of components, each having a 
weight and a profit, to maximize the total profit while 
respecting a maximum weight constraint. Each 
component is associated with a binary variable that 
models the selection or not of the component in the 
knapsack. 

 The multi-dimensional knapsack problem can be 
divided into 2D and 3D. In 2D, the components and the 
container are rectangles aligned on the axis system. In 
3D, the components are rectangular parallelepipeds. 

 
The bin packing problem: The bin packing problem 
generally consists of finding the most economical 
arrangement of a (Weakly heterogeneous) set of small 

objects (Items) in a given set of limited and voluminous 
objects (Bins). 
Thus, bin-packing problems consist of placing items in one 
or more bins characterized by shape. The variants are 
distinguished according to the size, the a priori knowledge 
of the items, the shape of the items and the bins (square, 
rectangular, circular), and the possibility to modify the 
orientation of the items. 
 
The cutting stock problem: This problem has been widely 
studied in the literature with numerous practical cases, such 
as in the paper, furniture, and glass industries. The domain 
of application is different, but the question of determining 
how to cut a set of small objects (items) according to the 
required backlog from large objects (bins) available in 
stock, which can be homogeneous or heterogeneous, these 
problems include two sub-problems: 
 Determine the objects from stock to be used to satisfy 

the order. 
 Find the best pattern that minimizes the trim loss. 
 
The strip packing: This problem is a 2-dimensional 
geometric minimization problem that consists of finding a 
feasible configuration composed of all the elements that 
minimize the area occupied in the strip. In this problem, we 
can have regular or irregular shapes of the elements. Given a 
set of rectangles aligned on the axis and a strip of finite 
width and infinite height, determine a non-overlapping 
packing of the rectangles in the strip by minimizing its 
height. 
The difference in complexity between C&P problems is due 
to their constraints, which depend on the objects' 
characteristics to be packed or cut and the cutting tools. 
These constraints are described as follows: 
 
Geometric constraint: The material is one of the essential 
elements of the cutting problem, and they differ by their 
Shapes, Homogeneity, and Dissymmetry. 
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Fig 3: The various types of materials. 
 

Rotation constraint: An oriented cut is considered if the 
material to be cut imposes an arrangement of the pieces in a 
specific orientation (The rotation is prohibited). In the other 

case of the non-oriented cut, the orientations are allowed, 
and the parts can be rotated by 90 degrees. 

 

 
 

Fig 4: Oriented and Non-Oriented cutting. 
 

Cutting tools constraint 
 Guillotine cutting: If we assume that the material is a 

rectangular plate, the cutting is done by dissecting from 
one side to its affixed parallel to the other two. 

 Non-guillotine cutting: Generally, this cut generates a 
better solution than guillotine-type cuts. This cut 
consists of using the same process as in the guillotine 

cut, and it can be carried out while marking stops to 
reach the opposite side of the (sub) rectangle to be cut. 

 Non-orthogonal cutting: This cut does not consider 
the parts' orientation. In this case, the parts can be 
rotated and translated (they are rotated, so they are not 
fixed). 

 

 
 

Fig 5: The different types of cut. 
 

Related works 
The cutting problem has been studied extensively for over 

50 years. According to history, [50] was the first to model the 
cutting problem [35]. Did some of the first works on one- and 
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two-dimensional inventory-cutting problems. They showed 
that they could be formulated as a linear programming 
problem, and the one-dimensional case can be solved using 
a knapsack function at each pivot. The same authors [36-37] 
generalized their model to multidimensional-cutting 
problems relying on other exact solution techniques. Later, 
[18] used the cutting problem to study multiprogramming 
systems [33], used it to investigate multiprocessor systems.  
 The search for a cutting problem solution differs according 
to the guillotine, non-guillotine, or non-orthogonal tools. 
The guillotine cut (edge-to-edge cut) is a straight bisecting 
line going from one edge of an existing rectangle to the 
opposite edge. Note that non-guillotine cuts (with possible 
stop markings without reaching the opposite sides) generate 
better solutions than guillotine ones. The non-orthogonal 
cuts do not consider the orientation of the parts (possible 
rotation of the cutting pattern).  
Many authors have been interested in the guillotine context, 
for example [35-36-37, 38-39-61, 41, 1-2, 15, 64, 7, 62, 30, 63, 13, 31, 66] Etc. 
Others have studied the problem using a non-guillotine tool, 
for example, [8, 21] Etc. 
Concerning the two-dimensional stock cutting problems, 
and since [37, 41] was the first to contribute with a more 
efficient computational procedure using a recursive 
algorithm where cuts are performed with a guillotine tool. 
Soon after [17], used an enumerative tree search algorithm 
with each node representing a cut to solve the problem 
while maintaining the guillotine restriction [43]. Improved the 
algorithm of [63] by using the properties of a dynamic 
programming solution. 
Without the guillotine constraint, dynamic programming 
approaches were proposed by [44-46-47], column generation by 
[59, 60], and integer linear programming formulations by [55, 11] 
developed a branch and cut and price algorithm.  
Concerning approximate methods [34], proposed a bottom-
left heuristic based on the first-fit strategy [12]. Proposed a 
generalization of the first-fit algorithm that they call Finite 
First Fit (FFF) [56]. Suggested the Alternate Directions 
heuristic (AD) based on the principle of the Floor-Ceiling 
(FC) method. When a level becomes full, the latter allows 
turning it over, exchanging the top and bottom, the left and 
right, and then arranging objects on the left again [46]. Solved 
the two-dimensional cutting problem using a hybrid 
approach that combines two heuristics, a depth-first search 
on a search tree using a hill-climbing technique and a 
dynamic programming procedure based on a solution of a 
series of one-dimensional bag-to-bag problems [47]. 
Combined a gluttonous algorithm and a hill-climbing 
strategy [3]. Proposed an approach that combines the Path 
Relinking method, strip construction, and a GRASP strategy 
[28]. Developed an approach compounding a heuristic metric 
and the maximal items area concept. In addition, varieties of 
metaheuristics have been adopted, for example, simulated 
annealing by [52], genetic algorithm [9], and Tabu search [3]. 
 
Resolution Methods 
Most C&P problems require heuristic or metaheuristic 
approaches to be solved because of the complexity of these 
problems, which belong to the NP-hard class. However, this 
does not prevent the possibility of solving them by exact 
methods when the considered problem includes a small 
instance. 
The first integer linear programming formulation of the one-
dimensional cutting problem [35] and the 2-D cutting 

problem with constraint levels [36] was given by Gilmore and 
Gomory-otherwise, [55]. The main feature of this model is 
the explicit verification of the guillotine constraint by 
distinguishing between parts that initialize a strip (The first 
part of a strip) and parts that are cut from a strip. Indeed, 
many algorithms for solving linear programs in cases where 
the variables used are real. We cite the simplex method as 
an example.  
The Branch and Bound (B&B) algorithm [22] is used to solve 
combinatorial optimization problems with a large number of 
possible solutions and, in particular, to solve integer linear 
programming problems where the notion of a feasible 
solution (satisfying the constraints) can be defined. It is 
based on a tree approach of searching for an optimal 
solution by separations and evaluations, where a tree of 
states, with nodes and leaves, represents the solution. 
Among the authors who use this method [7, 32, 10, 51].  
 
This method is based on three main axes 
 Evaluation: This reduces the search space by 

eliminating subsets that do not contain the optimal 
solution. 

 Separation: This consists of dividing the problem into 
sub-problems. 

 
The path strategy includes three types of strategies 
Width-first: This strategy favors the vertices closest to the 
root by making fewer separations from the initial problem.  
 
Depth-first: This strategy favors the vertices farthest from 
the root (Of higher depth) by applying more separations to 
the initial problem. This path quickly leads to an optimal 
solution by saving memory. 
 
The best first: This strategy explores sub-problems with the 
best bound. It also avoids exploring all sub-problems with a 
wrong evaluation of the optimal value. 
Moreover, the dynamic programming approach divides the 
initial problem into small sub-problems. Evaluating these 
sub-problems eliminates the less interesting ones from the 
search space. Therefore, dynamic programming techniques 
can find a succession of decision coordinates to reach the 
optimal solution [36] were the first to use dynamic 
programming in a recursive function for the two-
dimensional cutting problem. Later, [6] improved this 
formulation to solve the unconstrained guillotine-cutting 
problem. Also, [16, 45] have used this approach to solve the 
cutting problem.  
For heuristics resolution methods, we distinguish between 
two categories for C&P problems: one-phase methods and 
two-phase methods. 
The one-phase methods are based on the iterative 
arrangement of objects in the bins. 
 
There are rules to be defined 
 The order in which the objects are examined. 
 The bin. 
 The position in which one seeks to place them first. 
 
In addition, most approaches are layer algorithms. The 
pieces are positioned from left to right to form the layers. 
The first layer corresponds to the bottom of the bin (Strip), 
and the layers are created successively by a horizontal line 
that coincides with the top of the highest piece placed on the 
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plate below [19] suggested a bottom-left (BL) heuristic based 
on the first-fit strategy for the inventory reduction problem. 
Initially, only one bin is considered when there is no more 
space to store the current object in the first bin. A second 
bin is opened but without closing the first one. In an 
intermediate step where there are k open bins numbered 
from 1 to k according to the order of their first use, the 
current object i is stored in the lowest numbered bin that can 
contain it. Suppose no bin can contain i, a new k + 1 bin is 
created without closing the others. The order in which the 
objects are processed is crucial for the quality of the 
solution. 
This algorithm belongs to the family of heuristics that 
preserve the bottom-left stability condition. A rectangle 
preserves the bottom-left stability condition only if 
positioned on the lowest and leftmost empty surface. At 
each iteration of the algorithm, each bin keeps a list of 
maximal, in terms of inclusion, empty surfaces. The BL 
heuristic proceeds by placing the current object in the lowest 
and leftmost surface in the first bin that can hold it. The 
process is then repeated as long as objects still need to be 
placed. 
In addition, [12] have also proposed a generalization of the 
First-Fit algorithm, which they call "Finite First Fit (FFF)." 
Moreover, the "Alternate Directions (AD)" heuristic is 
based on the principle of the Floor-Ceiling (FC) method, 
which was proposed by [56]. When a level becomes full, this 
method allows turning it upside down, exchanging the top 
and the bottom, the left and the right, and then arranging 
objects on the left again. This heuristic works in two steps: 
 In the first step, the algorithm initializes with a number of 
bins equal to a lower bound on the number of bins needed. 
Then, it starts by placing objects at the bottom of these bins 
according to the BFD (Best Fit Decreasing) rule, which 
applies the same strategy as the first-fit rule, keeping the 
bins open. However, the choice of the bin in which the 
current object i will be placed depends on the values of the 
gaps (Free spaces) in the bins. Thus, i will be placed in the 
bin with the smallest gap that can hold it. While in the 
second step, the remaining objects are arranged in strips 
alternately from left to right and from right to left. When an 
object cannot be placed in any direction in the current bin, it 
is assigned to the next initialized bin, or a new bin is 
created. 
The "HBP" heuristic was proposed [14]. The idea of this 
heuristic is to rerun an algorithm several times that 
processes the objects in an order fixed at the beginning of 
each rerun. Only one bin is considered at a time. When no 
more objects can be placed in the current bin, we close it, 
and it will not be considered again. In this case, a new bin is 
opened, and the operation is repeated until all the objects are 
placed. 
On the other hand, the "Item Maximal Area (IMA)" 
heuristic proposed by [28], contrary to classical heuristics, 
which consist of allocating objects to bins in a predefined 
order, does not require any pre-ordering of objects. Instead, 
we look for the best pair (Object, bin) among all feasible 
pairs at each step of ordering an object. The couple's choice 
is managed by a specific criterion, which depends on the 
characteristics of the objects and the considered surfaces. 
For the two-phase methods, in the first phase, a solution is 
sought for the following strip-packing problem: the set of 
objects is the original set I, and the bin width is equal to W. 
Next, a solution is determined for the original two-
dimensional stock cutting problem by cutting the resulting 

strip into bins of height H.  
The following methods differ in the algorithms used in the 
two phases. In most cases, the first algorithm arranges the 
objects by levels. For example, when an object i is arranged 
on the left, we try to arrange the following objects in the 
horizontal band on the right of i. This method allows the 
management of only bands of width W and variable height 
in the second step, thus treating it as a one-dimensional 
cutting problem. 
Moreover, some algorithms use heuristics for the one-
dimensional cutting problem during the first phase. Among 
these algorithms, we mention the "Hybrid Best Fit method" 
(HBF) proposed by [12]. 
Again, some methods are also based on the transformation 
of the problem into a bag-to-bag problem, such as the 
"Knapsack packing (KP) method" by [56]. The levels created 
are filled to the maximum using the one-dimensional 
knapsack solution algorithm. 
Among the used metaheuristics in the literature to solve the 
problem of (C&P), we distinguish: 
 
The genetic algorithm: Search metaheuristics inspired by 
Charles Darwin's theory of natural evolution. This algorithm 
reflects the process of natural selection, where the fittest 
individuals are selected for reproduction to produce the next 
generation's offspring.  
Among the authors who used this algorithm are [49, 4, 57]. 
 
GRASP: The gluttonous random adaptive search procedure 
was proposed by [40] and generally involved iterations 
consisting of successive constructions of a gluttonous 
random solution and subsequent iterative improvements to it 
through local search. The greedy randomized solutions are 
generated by adding elements to the problem's solution set 
from a list of elements ranked by a greedy function 
according to the solution quality they will achieve. Many 
authors have used this approach to solve C&P problems 
such as [20, 58]. 
 
Simulated annealing: Is a metaheuristic to approximate 
global optimization in a large search space for an 
optimization problem. It is often used when the search space 
is discrete. This metaheuristic does not search for the best 
solution in the neighborhood of the current solution. Instead, 
one draws at random a solution from the neighborhood. If 
the solution is better, it is always accepted as a new current 
solution, but if the solution is worse than the present current 
solution is accepted with a certain probability. Among the 
authors who used this algorithm to solve the C&P problems, 
we mention [53, 48]. 
 
Particle swarm algorithm: Is a computational method that 
optimizes a problem by iteratively trying to improve a 
candidate solution about a given quality measure. It solves a 
problem by having a population of candidate solutions, here 
dubbed particles, and moving them around in the search 
space according to a simple mathematical formula over the 
particle's position and velocity. Each particle's movement is 
influenced by its local best-known position. However, it is 
also guided toward the best-known positions in the search 
space, updated as other particles find better positions. We 
can mention some authors who used this approach [27, 5].  
 
Conclusion 
In conclusion, this review paper has delved into the 
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multifaceted realm of cutting and packing problems, in 
particular the two-dimensional cutting stock problem, 
unravelling the intricate challenges and diverse 
methodologies employed to address them. By tracing the 
historical evolution and exploring and analyzing solution 
approaches. 
The cutting and packing problem, with its various 
incarnations, poses a substantial challenge in operational 
research and combinatorial optimization. The literature 
review has underscored the efforts of researchers to devise 
efficient algorithms while considering the NP-hard nature of 
these problems and the practical constraints encountered in 
real-world applications. 
Looking to the future, several perspectives and directions 
emerge for further exploration. It's interesting to integrate 
advanced technologies, such as artificial intelligence, 
machine learning, and Industry 4.0 principles, that hold 
promise for enhancing the efficiency and adaptability of 
cutting and packing algorithms in dynamic manufacturing 
environments. 
In addition, future research should focus more on 
incorporating sustainability metrics into cutting and packing 
optimization, aligning with the growing emphasis on eco-
friendly practices and minimizing waste in production 
processes. Also, tailoring cutting and packing solutions to 
specific industries or production scenarios can enhance the 
applicability and effectiveness of optimization algorithms. 
Furthermore, the collaboration between researchers from 
operational research, computer science, and manufacturing 
industries can facilitate the cross-pollination of ideas and 
lead to innovative, holistic solutions. 
 
References 
1. Adamowicz M, Albano A. Nesting two-dimensional 

shapes in rectangular modules. Computer-Aided 
Design. 1976;8(1):27-33. 

2. Adamowicz M, Albano A. Two-stage solution of the 
cutting stock problem. In: IFIP Congress. Vol 2. North-
Holland; 1971:1086-1091. 

3. Alvarez-Valdes R, Martí R, Tamarit J, Parajón A. 
GRASP and Path Relinking for the Two-Dimensional 
Two-Stage Cutting-Stock Problem. INFORMS Journal 
on Computing. 2007;19(2):261-272. 

4. Anand K, Babu A. Heuristic and genetic approach for 
nesting of two-dimensional rectangular shaped parts 
with common cutting edge concept for laser cutting and 
profile blanking processes. Computers & Industrial 
Engineering. 2015;80:111-124. 

5. Ayadi O, Barkallah M. An adapted particle swarm 
optimization approach for a 2D guillotine cutting stock 
problem. Mechanics & Industry. 2016;17(5):508. 

6. Beasley J. Algorithms for unconstrained two-
dimensional guillotine cutting. Journal of the 
Operational Research Society. 1985;36(4):297-306. 

7. Beasley J. An algorithm for the two-dimensional 
assortment problem. European Journal of Operational 
Research. 1985;19(2):253-261. 

8. Beasley J. An Exact Two-Dimensional Non-Guillotine 
Cutting Tree Search Procedure. Operations Research. 
1985;33(1):49-64. 

9. Beasley J. A population heuristic for constrained two-
dimensional non-guillotine cutting. European Journal of 
Operational Research. 2004;156(3):601-627. 

10. Bekrar A. Résolution du problème de placement en 
deux dimensions: Heuristiques, bornes inférieures et 

méthodes exactes [Doctoral dissertation]. Troyes; 
c2007. 

11. Belov G, Scheithauer G. A branch-and-cut-and-price 
algorithm for one-dimensional stock cutting and two-
dimensional two-stage cutting. European Journal of 
Operational Research. 2006;171(1):85-106. 

12. Berkey J, Wang P. Two-Dimensional Finite Bin-
Packing Algorithms. Journal of the Operational 
Research Society. 1987;38(5):423-429. 

13. Blazewicz J, Drozdowski M, Soniewicki B, Walkowiak 
R. Two-Dimensional Cutting Problem. International 
Inst. Appl. Sys. Analysis; c1991. p. 1-39. 

14. Boschetti M, Mingozzi A. The two-dimensional finite 
bin packing problem. Part II: New lower and upper 
bounds. Quarterly Journal of the Belgian, French and 
Italian Operations Research Societies. 2003;1(2):135-
147. 

15. Cani P. A Note on the Two-Dimensional Rectangular 
Cutting-Stock Problem. Journal of the Operational 
Research Society. 1978;29(7):703-706. 

16. Christofides N, Hadjiconstantinou E. An exact 
algorithm for orthogonal 2-D cutting problems using 
guillotine cuts. European Journal of Operational 
Research. 1995;83(1):21-38. 

17. Christofides N, Whitlock C. An Algorithm for Two-
Dimensional Cutting Problems. Operations Research. 
1977;25(1):30-44. 

18. Codd E. Multiprogram scheduling: parts 1 and 2. 
introduction and theory. Communications of the ACM. 
1960;3(6):347-350. 

19. Coffman E, Garey M, Johnson D. Approximation 
algorithms for bin-packing-an updated survey. In: 
Algorithm design for computer system design. 
Springer, Vienna; c1984. p. 49-106. 

20. Da Silveira J, Miyazawa F, Xavier E. Heuristics for the 
strip packing problem with unloading constraints. 
Computers & Operations Research. 2013;40(4):991-
1003. 

21. Daniels J, Ghandforoush P. An Improved Algorithm for 
the Non-Guillotine-Constrained Cutting-Stock Problem. 
Journal of the Operational Research Society. 
1990;41(2):141-149. 

22. Douiri M, Elbernoussi S, Lakhbab H. Cours des 
méthodes de résolution exactes heuristiques et 
métaheuristiques. Université Mohamed V, Faculté des 
sciences de Rabat; c2009. p. 5-87. 

23. Dowsland K, Dowsland W. Packing problems. 
European journal of operational research. 1992;56(1):2-
14. 

24. Dyckhoff H. A typology of cutting and packing 
problems. European Journal of Operational Research. 
1990;44(2):145-159. 

25. Dyckhoff H, Finke U. Cutting and packing in 
production and distribution: A typology and 
bibliography. Springer Science & Business Media; 
c1992. 

26. Dyckhoff H, Scheithauer G, Terno J. Cutting and 
packing. Annotated bibliographies in combinatorial 
optimization; c1997. p. 393-412. 

27. Eberhart R, Kennedy J. A new optimizer using particle 
swarm theory. In: MHS'95. Proceedings of the sixth 
international symposium on micro machine and human 
science; c1995. p. 39-43. 

28. El Hayek J, Moukrim A, Negre S. New resolution 
algorithm and pretreatments for the two-dimensional 

https://www.allcommercejournal.com/


Asian Journal of Management and Commerce  https://www.allcommercejournal.com 

~ 105 ~ 

bin-packing problem. Computers & Operations 
Research. 2008;35(10):3184-3201. 

29. Faina L. A survey on the cutting and packing problems. 
Bollettino dell'Unione Matematica Italiana. 
2020;13(4):567-572. 

30. Farley A. Selection of stock plate characteristics and 
cutting style for two-dimensional cutting stock 
situations. European Journal of Operational Research. 
1990;44(2):239-246. 

31. Fayard D, Zissimopoulos V. An approximation 
algorithm for solving unconstrained two-dimensional 
knapsack problems. European Journal of Operational 
Research. 1995;84(3):618-632. 

32. Fekete S, Schepers J, Van Der Veen J. An exact 
algorithm for higher-dimensional orthogonal packing. 
Operations Research. 2007;55(3):569-587. 

33. Garey M, Graham R. Bounds for Multiprocessor 
Scheduling with Resource Constraints. SIAM Journal 
on Computing. 1975;4(2):187-200. 

34. Garey M, Johnson D, Coffman E. Approximation 
Algorithms for Bin-Packing - An Updated Survey. In: 
Algorithm design for computer system design. Vienna: 
Springer; c1984. p. 49-106. 

35. Gilmore G, Gomory R. A linear programming approach 
to the cutting-stock problem. Oper. Res. 1961;9(6):849-
859. 

36. Gilmore P, Gomory R. Multistage cutting stock 
problems of two and more dimensions. Operations 
research. 1965;13(1):94-120. 

37. Gilmore P, Gomory R. The theory and computation of 
knapsack functions. Operations Research. 
1966;14(6):1045-1074. 

38. Haessler R. Controlling Cutting Pattern Changes in 
One-Dimensional Trim Problems. Operations Research. 
1975;23(3):483-493. 

39. Haessler R, Sweeney P. Cutting stock problems and 
solution procedures. European Journal of Operational 
Research. 1991;54(2):141-150. 

40. Hart J, Shogan A. Semi-greedy heuristics: An empirical 
study. Operations Research Letters. 1987;6(3):107-114. 

41. Herz J. Recursive Computational Procedure for Two-
dimensional Stock Cutting. IBM Journal of Research 
and Development. 1972;16(5):462-469. 

42. Hifi M. Rapport d’habilitation à diriger les recherches; 
c1998. 

43. Hifi M. An improvement of viswanathan and bagchi's 
exact algorithm for constrained two-dimensional 
cutting stock. Computers & Operations Research. 
1997;24(8):727-736. 

44. Hifi M, M'Hallah R. An Exact Algorithm for 
Constrained Two-Dimensional Two-Staged Cutting 
Problems. Operations Research. 2005;53(1):140-150. 

45. Hifi M, Ouafi R. Best-first search and dynamic 
programming methods for cutting problems: The cases 
of one or more stock plates. Computers & industrial 
engineering. 1997;32(1):187-205. 

46. Hifi M, Roucairol C. Approximate and exact algorithms 
for constrained (Un) weighted two-dimensional two-
staged cutting stock problems. Journal of combinatorial 
optimization. 2001;5(4):465-494. 

47. Hifi M, M’Hallah R, Saadi T. Strip generation 
algorithms for constrained two-dimensional two-staged 
cutting problems. European Journal of Operational 
Research. 2006;172(2):515-527. 

48. Hong S, Zhang D, Lau H, Zeng X, Si Y. A hybrid 

heuristic algorithm for the 2D variable-sized bin 
packing problem. European Journal of Operational 
Research. 2014;238(1):95-103. 

49. Hopper E, Turton B. An empirical investigation of 
meta-heuristic and heuristic algorithms for a 2D 
packing problem. European Journal of Operational 
Research. 2001;128(1):34-57. 

50. Kantorovich L. Mathematical methods of organizing 
and planning production. Management Science. 
1960;6(4):366-422. 

51. Kenmochi M, Imamichi T, Nonobe K, Yagiura M, 
Nagamochi H. Exact algorithms for the two-
dimensional strip packing problem with and without 
rotations. Eur J Oper Res. 2009;198(1):73-83. 

52. Lai K, Chan J. Developing a simulated annealing 
algorithm for the cutting stock problem. Comput Ind 
Eng. 1997;32(1):115-127. 

53. Leung S, Zhang D, Sim K. A two-stage intelligent 
search algorithm for the two-dimensional strip packing 
problem. Eur J Oper Res. 2011;215(1):57-69. 

54. Lewis H, Garey M, Johnson D. Computers and 
intractability. A guide to the theory of NP-
completeness. WH Freeman and Company, San 
Francisco. 1979;338:498-500. 

55. Lodi A, Monaci M. Integer linear programming models 
for 2-staged two-dimensional knapsack problems. Math 
Program. 2003;94(2):257-278. 

56. Lodi A, Martello S, Vigo D. Heuristic and 
metaheuristic approaches for a class of two-dimensional 
bin packing problems. INFORMS J Comput. 
1999;11(4):345-357. 

57. Lu H, Huang Y. An efficient genetic algorithm with a 
corner space algorithm for a cutting stock problem in 
the TFT-LCD industry. Eur J Oper Res. 
2015;246(1):51-65. 

58. MirHassani S, Jalaeian Bashirzadeh A. A GRASP 
meta-heuristic for two-dimensional irregular cutting 
stock problem. Int. J Adv Manuf Technol. 
2015;81(1):455-464. 

59. Morabito R, Garcia V. The cutting stock problem in a 
hardboard industry: A case study. Comput Oper Res. 
1998;25(6):469-485. 

60. Song X, Bennell J. Column generation and sequential 
heuristic procedure for solving an irregular shape 
cutting stock problem. J Oper Res Soc. 
2014;65(7):1037-1052. 

61. Sweeney P, Haessler R. One-dimensional cutting stock 
decisions for rolls with multiple quality grades; c1988, 
44(2). 

62. Vasko F. A computational improvement to Wang’s 
two-dimensional cutting stock algorithm. Comput Ind 
Eng. 1989;16(1):109-115. 

63. Viswanathan K, Bagchi A. Best-First Search Methods 
for Constrained Two-Dimensional Cutting Stock 
Problems. Oper Res. 1993;41(4):768-776. 

64. Wang P. Two Algorithms for Constrained Two-
Dimensional Cutting Stock Problems. Oper Res. 
1983;31(3):573-586. 

65. Wäscher G, Haußner H, Schumann H. An improved 
typology of cutting and packing problems. Eur J Oper 
Res. 2007;183(3):1109-1130. 

66. Zissimopoulos V. Heuristic methods for solving (Un) 
constrained two-dimensional cutting stock problems. 
Methods Oper Res. 1985;49:345-357. 
 

https://www.allcommercejournal.com/

