

E-ISSN: 2708-4523
P-ISSN: 2708-4515
Impact Factor (RJIF): 5.61
AJMC 2026; 7(1): 96-108
© 2026 AJMC
www.allcommercejournal.com
Received: 05-10-2025
Accepted: 08-11-2025

Sandeep Jain
Post Research Scholar,
Department, Department of
Commerce, University of
Kalyani, West Bengal, India

Sunil Kumar Gandhi
Professor (RETD),
Department of
Commerce, University of
Kalyani, West Bengal, India

Use of artificial intelligence in ERP, accounting, assurance and finance: A literature review

Sandeep Jain and Sunil Kumar Gandhi

DOI: <https://www.doi.org/10.22271/27084515.2026.v7.i1b.958>

Abstract

The rapid advancement of artificial intelligence (AI) has significantly transformed the domains of enterprise resource planning, accounting, assurance, and finance. This study presents a systematic literature review examining the applications, impacts, opportunities, and challenges associated with AI adoption in these fields. Drawing on over 300 peer-reviewed studies published between 1989 and 2020, the paper analyzes how AI technologies such as machine learning, expert systems, intelligent agents, and deep learning enhance efficiency, accuracy, and decision-making in accounting and financial processes. The review highlights AI's role in automating routine tasks, improving audit quality, strengthening fraud detection, and supporting financial forecasting and tax compliance. Despite these benefits, the study also identifies critical concerns related to data bias, ethical implications, information security, and workforce displacement. The findings indicate that while AI cannot fully replace professional judgment, it is reshaping the accounting profession toward more strategic and analytical roles, thereby creating new research and practice opportunities.

Keywords: Artificial intelligence, Product lifecycle management, Digital transformation, Intelligent decision-making, Manufacturing systems, Industry 4.0, Sustainable innovation

1. Introduction

John McCarthy offers the following definition in this 2004 It is the science and engineering of making intelligent machines, especially intelligent computer programs. It is related to the similar task of using computers to understand human intelligence, but AI does not have to confine itself to methods that are biologically observable."

AI is important in accounting and finance as it streamlines and optimizes many repetitive accounting processes. The overall outcome is that organizations can save more time and money as AI provides valuable insights to accounting and financial analysts and assists in analyzing large amounts of data fast, generating more accurate, actionable data at lower costs. This data can then be used to deliver insights and analytics, driving strategic decision making that affects the whole company.

The use of the traditional system is declined greatly and with a modernization of the accounting and finance processes there have been a great deal of change, and these improvements are beneficial to the accounting and finance industry. Adopting Artificial Intelligence applications such as Expert systems for audit and tax, Intelligent Agents for customer service, Machine Learning for decision making, etc. can lead a great benefit by reducing errors and increasing the efficiency of the accounting and finance processes.

In recent years, with the innovation and development of science and technology, the application of artificial intelligence technology in accounting field has become more and more extensive and in-depth. The integration of artificial intelligence and accounting is both an opportunity and a challenge. This paper combs the research literatures in the field of accounting brought by artificial intelligence, gets to know the basic situation of the research literatures, analyzes the application status, influence and coping strategies of artificial intelligence in accounting field, points out the limitations of existing research, and provides reference recommendations for the future research trend.

2. Objectives of the Study

The purpose of this literature review is to gain an understanding of the existing research or literature relevant to the impact of Artificial Intelligence on the profession of accounting and

Corresponding Author:
Sandeep Jain
Post Research Scholar,
Department, Department of
Commerce, University of
Kalyani, West Bengal, India

assurance. It provides a comprehensive overview of knowledge about this area of study in the form of a written report. Specifically, the study describes the impacts of AI on accounting and assurance in the following manner; by identifying the emerging trends in these fields, by identifying the impact of AI on the efficiency and effectiveness of these professions, and the inconsistencies and gaps in the research. The details of this study are helpful for the professionals in accounting and auditing as it enhances the readers understanding of the topic at large.

The aim of this paper is to analyze the current situation regarding artificial intelligence in audit and accounting, including the newest trends, opportunities and threats. Due to its innovative character, this field is constantly changing, with the biggest companies investing enormous amounts of capital to achieve wide use of artificial intelligence in audit and accounting. One of the main goals of the paper is to provide an analysis of audit tasks that benefit from artificial intelligence implementation, with an emphasis on risk assessment. Another goal is to outline artificial intelligence technologies used in audit and accounting.

The main objective of the current study is to extensively revise the literature review of AI and its impact on accounting. Moreover, this investigation leads to critically identify the research problems of AI in accounting that support researchers in investigating such research gaps in the near future. The methodology employed is the panel systematic dimensions approach that aims to address research problems by critically evaluating and integrating the findings of all of the relevant prior studies. To keep ensuring a transparent and replicable process, we have conducted a meta-analysis. The database search was between the years 1989-2020 and reviewed more than 300 research papers. As meta-analysis results show, the majority of researches illustrate a positive effect of the impact of AI systems in the accounting and finance process. Moreover, it contributes to our knowledge through achieving a well established and systematic review, it also identifies relations, gaps and inconsistencies in the literature on AI and accounting in order to offer new research gaps.

3. Conceptual Issues

Arthur Samuel first introduced Artificial Intelligence (AI) in 1959. It is a subfield of Artificial Intelligence that aims to enable computer programs to automatically learn and develop itself by using large amounts of data to provide valuable insights and future predictions (Kaur, 2020) [36]. Artificial Intelligence consists of neural networks that are like the skills of the human brain. It is developed to mimic human brainstorming patterns. Therefore, after analyzing the sufficient data, it starts interpreting them and connects them to take necessary actions on its own (Helm *et al.*, 2020) [32].

Unlike the traditional computer programs designed to give distinct instructions to the computers for solving a defined problem with both the possibilities of certainty and uncertainty (Rice, 2014) [59]. AI enables software applications to become more accurate by using historical data as input and predicting outcomes that are not explicitly programmed to do so (Michie *et al.*, 1994) [47]. The fundamental categories of algorithms in AI are supervised, unsupervised, and semi-supervised algorithms (Ayodele, 2010) [5]. These algorithms are trained to change and improve themselves, analyze anomalies, remove errors

without any human intervention and mitigate the chances of occurring again (Bonaccorso, 2017) [10]. They are also used to improve processing speed, review source documents, and find similar patterns from huge or complex data (Mohammed *et al.*, 2016) [49].

Artificial Intelligence holds a significant attraction for business world in these contemporary times. The broad range of facilities that it offers and the various applications on business data that it has, allows the organizations to easily cope with the dynamic environmental conditions in diversified industrial sectors (Apte, 2010) [3]. AI is beneficial in accomplishing complex business tasks with great accuracy instead of humans who cannot process huge quantum of data and produce accurate conclusions (Finlay, 2017) [27]. Similarly, the integration of multiple processing units results in a high processing speed and decreases the element of human biases (Canhoto & Clear, 2020) [13].

Today, extensive research is being conducted on the impacts of Artificial Intelligence on the professions of accounting and assurance. Its vast application on various tasks such as assessing business risks, analyzing business transactions or activities, and reviewing source documents etc. has gotten the attention of many of the large businesses and academics (Atanasovski *et al.*, 2020) [4]. Researchers mostly use Artificial Intelligence to make predictions about accounting estimates, material misstatements, bankruptcy, and fraud. It is also creating a great awareness with respect to the inductive reasoning methodology in accounting and auditing (Canhoto & Clear, 2020) [13].

Deep learning technology that is a subset of a Artificial Intelligence is another emerging form of artificial intelligence. This technology is particularly used in auditing to recognize such patterns in a huge volume of data that are generally impossible for an individual to process (Issa *et al.*, 2016) [35]. This emerging technology has led to the increased audit automation and it allows the auditors to create supplementary audit evidence by utilizing big data. The efficiency and the effectiveness of the auditor's decision-making process is also improved by this technology (Sun & Vasarhelyi, 2017) [65].

Numerous large CPA firms are still trying to find other ways in which Artificial Intelligence could be useful for conducting financial statement audits, especially in the risk assessment process (Kokina & Davenport, 2017) [41]. However, researchers believe that even though there is an immense potential for a deeper and broader understanding of Artificial Intelligence on audit processes, the logic or accuracy of the patterns identified by it could be questionable. Therefore, some academics are now raising the concerns of potential ethical implications and human biases of Artificial Intelligence in accounting/auditing research and practice (Dickey *et al.*, 2019) [21].

Another major area of research that the researchers widely discuss pertains to the impact of Artificial Intelligence on the individuals or occupations associated with accounting and audit. It is believed that where some of the accountants/auditors would embrace the challenge of this new business environment, many would fail to adapt and will be left behind (Stancheva-Todorova, 2018) [63]. Nonetheless, many researchers concede that the profession of accounting is on its way to make a significant change in the role and the function that it plays in the organization (Donepudi, 2019) [24]. However, where there is a substantial amount of literature that has been produced on the

applications of AI techniques to audit and accounting procedures, there is a considerable gap of studies on the potential bias and ethical implications of AI on these topics.

General Description of the Research Literature

A. Basic Information on the Temporal Distribution of Research Literatures in this research, the author searched "

Table 1: Temporal Distribution of Research Literature

Year	"(artificial intelligence)" and "(accounting)"	"(artificial intelligence)" and "(audit)"	"(artificial intelligence)" and "(financial management)"	"(artificial intelligence)" and "(taxation)"
1997	1			
2003			1	
2005	1			
2009	1		1	
2010		1		
2012		1		
2016	1	2		
2017	26	7	6	
2018	124	15	16	4
2019-2021	153	14	4	1

As can be seen from "Table I", the researches on artificial intelligence in the field of accounting were mainly made in recent two years, reaching 159 articles in 2018 and 180 articles in January-August 2019. This is mainly because in March 2017, Deloitte Touche Tohmatsu, one of the world's four largest accounting firms, announced that it will join hands with Ki-ra System to apply artificial intelligence into accounting, taxation and auditing. KPMG also announced the introduction of IBM Watson cognitive technology. The release of that news quickly led to researches on artificial intelligence in the field of accounting. From the research themes, the main research focuses on artificial intelligence in accounting; there have already been 307 articles about researches in this aspect. There are also certain researches on artificial intelligence in audit and that in finance, with 40 and 38 articles respectively. There are relatively few researches on artificial intelligence in taxation, with only five articles and mainly about the basic situation of applying artificial intelligence in tax management

B. Basic Information on the Publications That Published with Such Research Literatures Among the existing research literatures, only 15 articles were published in core journals, and were mainly published in publications such as the Finance & Accounting, the Communication of Finance and Accounting, the Finance and Accounting Monthly and the Friends of Accounting; the remained 375 articles were published in general publications. This shows that although the researches on artificial intelligence in accounting have made some breakthroughs in the quantity in recent years, the breadth and depth of the research are not enough. The published academic journals lack high theoretical and authoritative natures and fail to reach a high cognition degree in the fields of accounting and audit in China.

C. Basic Information of the Topics of Such Research Literatures According to the contents of the existing research literatures, the current research topics about artificial intelligence in accounting field 1 are mainly concentrated in four aspects: the application of artificial intelligence in accounting field, the impact of artificial intelligence on the accounting field, the transformation from

(artificial intelligence)" and " (accounting)"/ (audit)"/ " (financial management)"/ " (taxation)" under the search item of "title" on CNKI and conducted advanced searches on "all journals" up to Aug., 2019; totally, 390 articles were collected. The specific temporal distribution is shown in "Table I":

financial accounting to management accounting through artificial intelligence, and the cultivation of accounting talents in the context of artificial intelligence.

4. Research Design and Identification of Literature

This is kind of a review study, the purpose of which is to analyze or synthesize the research that has already been conducted in primary sources. A review study is generally conducted to summarize the current state of research on any given topic. Therefore, this literature review does the same by critically evaluating the previously published material in Artificial Intelligence in accounting and assurance. The organization, combination, and evaluation of the previously published material on this topic enables the readers to understand and identify the relationships, inconsistencies, gaps, and contradictions in the area of AI in accounting and assurance.

A systematic and critical analysis of the literature relevant to the impacts of AI on the profession of accounting and assurance has been done in this study. To identify relevant literature, popular articles and papers were reviewed, and bibliographies of these papers were used to find appropriate sources for further research. The literature used for this study consists of the research paper published in peer-reviewed journals. It is also ensured that a large part of this review includes of studies that are recently published.

The body part consists of eight different areas relevant to the field of AI in accounting and assurance. These areas describe the relationship between AI and finance, AI and assurance process, AI and accounting estimates, AI in financial projections, AI and tax compliance, AI in detecting accounts fraud, blockchain technology, and challenges of Artificial Intelligence for auditors. The last part of this report concludes the entire report and briefly states the findings of this report.

4.1 Literature on Artificial Intelligence in Accounting

Artificial Intelligence in accounting has already made its impact by reducing the fear and workload while conducting audits, creating automated forecasts and assisting smart bots in artificial intelligence accounting. The Use of Software makes it easier to manage continuously occurring

transactions by recognizing patterns. This has made the tedious tasks of bookkeeping a lot easier for accountants by saving their time and efforts, which can be used in other important tasks (Canhoto & Clear, 2020) [13].

One of the most fundamental ways in which Artificial Intelligence can change the financial industry is by reducing the common errors committed by a human being. Most of the regular data-entry practices and management of invoices and low-level bookkeeping tasks are now replaced by Machine Learning. This in turn, has reduced the chance of incorrect input of accounting information and reduced the workload of accountants (Elmes *et al.*, 2020) [25]. While some researchers have shown their concerns toward the eliminating jobs in the profession of accounting and finance, many are confident that it would free up the times of financial professionals that can be used for working on a higher-level aspect within an organization (Galarza, 2017) [28]. AI is adding an immense value in financial sectors as now professionals have more time to focus on business strategy and improvement of efficiency and effectiveness of existing business operations.

The research on artificial intelligence in the field of accounting in China began with a scholar who put forward to use artificial intelligence technology to design an intelligent decision supporting system. Feng Jing (1999) [83] proposed that the intelligent financial decision supporting system is a combination of traditional financial decision supporting system and artificial intelligence, and is a decision aid. It helps decision makers make decision analysis in complex context to determine a best solution to a problem. Liang Ronghua and Shi Jijian (2001) [82] focused on the financial knowledge representation and financial reasoning mechanism used in implementation of knowledge base system of the financial decision supporting system, and expounded the structural framework and implementation of the financial decision supporting system. Xu Yingjie, Gu Linlin, and Deng Jinpeng (2005) [58] proposed the idea of identifying false accounting information in an intelligent way, and initially established a module system for the system. Huang Laiolong (2009) believed that artificial intelligence can be applied in expert system, pattern recognition, resource planning and configuration, intelligent financial management information sharing system, and artificial neural network models.

Deloitte Touche Tohmatsu announced a partnership with Kira Systems to introduce artificial intelligence into accounting work; KPMG jointed hand with IBM to use Watson's cognitive computing technology to conduct accounting and audit works; PwC also launched robotic automation solution. In July 2016, the "Kidney Bean Accounting" independently developed by China was officially put into trial online, which officially started the application of artificial intelligence in accounting work. According to the view of many scholars, the current application of artificial intelligence in accounting industry can be roughly divided into accounting, auditing and financial management. In terms of accounting, Lei Liping (2017) believed that the current accounting industry, including accounting firms, business units and government agencies, were widely applying computerized software and simple artificial intelligence tools for processing daily accounting such as filling voucher, bookkeeping, reconciliation, checkout, etc. Wang Jiacan and Su Yang (2017) [78] found that many large enterprises are currently

trying to use the "artificial intelligence + accounting big data" model for accounting, namely the intelligent use of enterprise accounting data. This way is in line with the requirement of large enterprise groups and multinational companies to quickly use the accounting data of each branch across regions. In terms of auditing, Bill *et al.* believed that the widest application of artificial intelligence in auditing is to process massive data and artificial intelligence can help quickly find the key data needed by auditors from a large amount of data. In terms of financial management, Wang Jing (2017) [78] put forward the application of artificial intelligence in college financial services, and expounded the application design of the first financial intelligent service robot (including face-to-face interactive intelligent service robot and PC-based mobile-side virtual robot) in colleges and universities nationwide. Zhang Yiyu (2018) [74] believed that artificial intelligence had been widely applied in the integration of online reimbursement system and management information system for electronic invoices and accounting electronic files.

With the development of society and science and technology, the application field of artificial intelligence in accounting work will be further expanded. Chen Hong (2018) [79] believed that artificial intelligence will be widely used in economic prospect forecasting, participation in accounting management decision-making and planning, and asset valuation and forecasting. Sun Hongxi (2018) believed that artificial intelligence promoted the further upgrading of corporate financial sharing center, so that the financial sharing center shifted from traditional transactional processes to higher-value processes.

On March 5, 2017, Premier Li Keqiang proposed in the National Government Work Report "Accelerating the cultivation and expansion of emerging industries including artificial intelligence". This is the first time that artificial intelligence is written into government work report. Many experts and scholars believe that artificial intelligence will bring huge changes to the society. 1) Research on the direct influence of artificial intelligence on accounting work in general, according to basic research norms, this paper's research ideas and main concerns are mostly reflected in the keywords, first-level headings, second-level headings and three-level headings of the paper. Therefore, the author consulted the research literature, and extracted the keywords of an article and the keywords contained in the first-level title, the second-level title and the third-level title to understand the artificial intelligence that the scholars have studied to bring about accounting work. There are eight main aspects of direct impact. ("Table II")

Table II: Statistics of Direct Impact of Artificial Intelligence on Accounting Work

Main influence	Frequency
1. Improved accounting (audit) work efficiency	99
2. Improved the quality of accounting information	88
3. Effectively prevented fraud and reduced audit risk	40
4. Saved cost on human resources	26
5. Enhanced the (core) competitiveness of enterprise	22
6. Prevented and controlled the operation risks of accounting business	7
7. Unguaranteed accounting information security	15
8. Reduced the demand for traditional accounting talents	55

As can be seen from "Table II", items 1-6 in the table are positive aspects brought by artificial intelligence. As artificial intelligence gradually enters accounting, auditing, taxation and other work, it has played a clear role in improving the work efficiency, maintaining accurate accounting information, preventing risks and saving cost on human resources. Artificial intelligence is a double-edged sword. The technological innovation brought by it brings a series of positive influence, but also brings some negative influence, such as items 7-8. In the era of big data, network information security and the "intrusion" of hackers may pose influence on the security of accounting information. It is also because artificial intelligence can efficiently process the collection, collation and analysis of data, the demand for traditional accountants is reduced undoubtedly, but artificial intelligence may not replace accountant. Artificial intelligence can provide information, build models, and simulate future environment to help management accountant accomplish tasks, but cannot completely replace management accountant in making management decisions. Therefore, both financial accountant and management accountant have features that cannot be replaced by financial robots (Zhou Yaoling *et al.*, 2018)^[85]. It is also difficult for artificial intelligence to achieve effective audit communication and observation. Artificial intelligence is lack of audit judgment ability and is difficult to guarantee information security. Therefore, artificial intelligence cannot completely replace audit work (Wu Weixia, 2018)^[88].

Similarly, the strong technological base that exists today made a number of accounting processes so effortless that most of the tasks that required a sizable workforce can easily be done automatically or through a minimum human effort by the software (Elmes *et al.*, 2020)^[25]. Furthermore, nowadays, financial accounting software are so much embedded with A.I. that any software that is without AI would be considered incomplete. For that reason, many of the accounting tasks such as expense accounts, receivable management, payables management, tax calculations and risk assessment can easily be automated with Artificial Intelligence (Kaya *et al.*, 2019)^[38]. Therefore, the research conducted on the impacts of Artificial Intelligence on the different accounting and audit areas is discussed in detail in the following part of the report.

Artificial Intelligence in Accounting Estimates

Widespread use of accounting estimates can be witnessed in all the industrial sectors present in the market. Managerial estimates comprising of warranty expense estimation, asset impairment, useful life of asset, depreciation method, estimates of employee pension fund, employee stock options, contingent liabilities, allowances for receivables, estimating doubtful debts, tangible assets valuation and their revaluation are pervasive. Calculations for these estimates are computed while ensuring that an aligned pattern is followed in order to generate consistent values (Lev *et al.*, 2005)^[46]. These estimates majorly comprise of balance sheet items such as assets and liabilities and their respective heads in income statement.

Estimates are subject to human errors, manipulations by managers and biasness. This has a potential to adversely affecting the reliability of the financial reports which can be misleading for the directors and the decision based on such reports can cause great financial and reputational losses for the companies. These estimates are further incorporated by

the auditors in preparation of company's audit report which can further lower the reliability of company's financials (Petroni & Beasley, 1996)^[54]. Research shows that Artificial Intelligence boosts performance and improved experience of managerial estimates for auditors, managers, and accountants. The fusion of A.I. along with human intelligence is a promising strategy to achieve better results for the business (Cho *et al.*, 2020)^[18]. Another research showed that in four out of five insurance lines examined, the data with regards to loss estimates, reserves and realizations produced by AI was superior to the actual managerial estimates reported in financial statements.

This shows that accounting estimates can significantly be improved through Artificial Intelligence by enhancing the reliability and consistency of accounting estimates. In addition to this, AI estimates can also be used as a benchmark to compare the estimates of the managers and auditors. If the deviation from the AI estimates is significant than managers' estimates must be reexamined. Other implications and further research on this area is also required to improve the financial information.

4.2 Literature on Artificial Intelligence in Assurance Process

Using traditional approaches to manage accounts always bear an inherent risk of human error. This can lead to a failure in identification of errors and use of inappropriate corrective internal controls for their mitigation. Eventually, the effectiveness of audit reports could be compromised in these circumstances. However, the use of Artificial Intelligence algorithms in audit tools has improved the reliability of audit by reducing the risk of inappropriate opinion and increasing auditor's ability to evaluate the estimates (Cho *et al.*, 2020)^[18]. The worth of company's financials before its potential investors and stakeholders have improved by using AI in assurance techniques.

Similarly, Artificial Intelligence provided a fantastic opportunity for accountants and auditors who had to search through a large amount of data every day. Artificial Intelligence is used in auditing for numerous purposes. Auditors have always had many transactions to sift through, but they spent most of the time in organizing the data rather than analyzing it. Artificial Intelligence can analyze the data hundred times faster than a human can do while at the same time passing a quick and unbiased judgement (Sun, 2019)^[64]. Therefore, over the past 20 years, an auditor's job is completely changed. For instance, Artificial Intelligence tools allow auditors to analyze multiple contracts in matters of minutes by mimicking the human recognition approach and applying it to finding the relevant provisions in contract (Clark, 2018)^[19]. This way AI helps auditors in optimization of their time and enabling them to use their human judgement to analyze the delivered outcome.

Artificial Intelligence tools do not replace the duties performed by the auditor. Rather, it works as an additional tool in auditor's range of Computer Auditing Tools and Techniques (CAATs). Automated tools are used by auditors to assist them in analyzing the huge data ledgers, highlighting risk indicators, and reporting the findings or exceptions (Hooda *et al.*, 2018)^[33]. The real training of the Artificial Intelligence begins if the auditor invalidates the exception reported. In that case, the machine algorithm trains itself by finding additional positive or negative elements relating to the data set and applying them on other

exceptions, hence getting trained to identify in more improved way. AI also aids by analyzing the patterns in a set of transactions and recognizing the behavior of normal transactions, this approach is then used to further identify the anomalies arising in the data by comparing normal and unusual patterns of business transactions (Samantha, 2019). Artificial Intelligence is serving wonders by accelerating the core audit speed, providing in depth insights and enhancing the quality of work. Therefore, rather than just depending on specific sampling techniques, auditors can benefit from considering whole set of data to report anomalies (Tiwari & Hooda, 2018)^[33]. Considering the whole population of data lowers the sampling risk and increases the collaboration among audit teams while deciding for testing techniques to be opted in much specific and clear way. All the big 4 firms have been reported to aggressively use A.I. enabled technological tools in order to raise mark of assurance for stakeholders while embedding innovations in their systems (Saleiro *et al.*, 2018)^[60].

AI also creates a great value for the senior management and directors of audit firms as it enables them to take decisions based on extensive research and productive analysis (Kogan *et al.*, 2019)^[40]. AI has made so much impact on audit profession that almost all of the big audit firms in the industry are using Artificial Intelligence Algorithm that are capable to read documents such as leases, sales contracts, derivative contracts etc. (Hooda *et al.*, 2018)^[33]. These AI algorithms include features that enables them to recognize trend patterns, key terms in contracts and outliers in data set provided which then allows the auditors to take a focused approach towards the audit.

Another use of Artificial Intelligence in assurance is software such as Halo that enables the auditors to analyze every transaction that took place during the year. It identifies the problematic areas with risk potentials and highlighting questionable nature items from journal entries. This enables auditors to have a wealth of insight when it comes to analyzing and assessing the risks. Conversely, use of this approach by the auditors (that are internal or external) in identifying the anomalies and then considering them "normal" as argued by some critics is also risky because at times, a possibility of fraudulent transaction exists in a dataset used for its learning (Hooda *et al.*, 2018)^[33]. This means that A.I. would inherently believe that the abnormal patterns are normal, and this can be misleading.

Challenges of Artificial Intelligence for Auditors

Research shows that digitizing the audit work is imposing challenges on auditors as a considerable volume of data that auditors use is based on companies' record. Therefore, valid and clear account information and accurate financial statements are needed to assist the external auditors at the year-end of financial period. Otherwise, over-stated or understated accounts figures would lead to the preparation of wrong reports, causing a disruptive and multiplicative effect for stakeholders (Kumar *et al.*, 2017)^[43]. As the working of A.I. embedded algorithms would be based on the record that the client provides, the expertise of cybercrime consultants must be secured by the audit firms in order to assure the integrity of financial and especially nonfinancial data residing at the client's server (Cho *et al.*, 2020)^[18].

Also, due to the innate ethical and confidential restrictions, clients do not let auditors gain complete control over the data. Therefore, auditors will have to apply effective testing

controls to gain the relevant and reliable information. Once the completeness, accuracy and valuation of figures stated within has been authenticated, only then the auditors would be able to feed the test data for Machine Learning. Similarly, hackers can also manipulate the client's data by breaching the security protocols (Clark, 2018)^[19].

Companies applying the A.I. to the finance function face the challenge of designing algorithms that produce unbiased results and are not complex for users to understand how they work and make decisions. Therefore, auditors also need to evaluate the element of human biases while training with dataset used as input. The general biases that the researchers in this regard have identified include availability biasness, confirmation biasness, anchoring biasness and overconfidence biasness. Availability biasness refers to the attitude of gathering the available data and forming conclusions of it. Confirmation biasness is the possibility of giving weightage only to data which is aligned with the existing believes. Overconfidence biasness results in the sense of superiority and overestimating one's own abilities, and anchoring biasness appears when the audit clients establish their own Artificial Intelligence tools that could be incomplete or contain incorrect data, but auditors still use them. Therefore, sometimes auditors start relying too much on the outputs delivered by AI algorithm while ignoring the biasness that has been part of the data which has been used as an input (Dickey *et al.*, 2019)^[21]. Resultantly, auditors will need to critically evaluate the element of human biases involved while giving inputs. Ignoring this fact can lead to the unreliable and detrimental decisions.

Ultimately in the long run auditors will need to understand the basic workings and functionalities of algorithms and information systems from data scientists just like the present scenario where auditors take guidance from actuarial, valiators and information technology experts. This would increase the burden of knowledge for auditors as they already need to be aware of increasingly complex set of accounting and auditing rules and regulations (Cho *et al.*, 2020)^[18]. Otherwise, the appropriateness of audit documentation such as working papers and reports for stakeholders would not be much reliable.

Due to the newness of AI in audit, academics are still on the initial stage of identifying and uncovering the potential uses of AI in this area. However, due to the limited empirical evidence available to the researchers, the research on this area is also limited. Therefore, a huge opportunity for research on the impacts of AI on audit still exists. Moreover, no one sees the future of auditors diminishing with the advancement in Artificial Intelligence technology. It only liberates the auditors from wasting time on a repetitive task while allowing them to focus on potential risky areas and interpretations.

4.3 Literature on AI in Tax Compliance

The research conducted by one of the largest audit firms in the world, PricewaterhouseCoopers revealed that a printed version of the IRS US Tax Regulations exceeds 75,000 pages in total. This makes it extremely difficult for taxpayers and even tax professionals, accountants, and auditors to comprehend such a large volume of complex data. Therefore, the company tried to automate the comprehension of tax passages by creating a linguistic system that can organize the reference terms in tax cases and regulations for effective human reading and

comprehension (PricewaterhouseCoopers, 2017)^[56]. A.I. is also being used by the company to automatically process tax notices by using key terms and preparing their responses as well. Similarly, the company's account classification, tax compliance and reporting are also done by using AI algorithms (PricewaterhouseCoopers, 2019)^[57].

AI is also used to understand the trial balance and classification of transactions by identifying the account names in which a certain transaction fall. This classification is then used for a variety of purposes by the accountants including the calculation of tax and adjustments of accounts with regards to income and expense. Likewise, tax compliance and reporting also plays a significant role in both accounting and audit matters. For this reason, A.I. is used to perform and evaluate the organized and unorganized income tax compliance activities. Other routine and structured activities that used to be performed manually such as gathering trial balance data from source systems, making book/tax adjustments, posting the entries of tax, and completing tax forms is also done using AI capabilities (PricewaterhouseCoopers, 2019)^[57].

Tax plays an integral part in accounting and finance function. People providing consultancy services need to be aware of all the applicable tax rules and regulations while providing services to their clients. However, now with the application of Artificial Intelligence model, the research is in process that can provide guidance to the taxpayer while at the same time improving the assessments for the subsequent taxpayers, reducing the role and burden of tax advisor and accountants. The research has also been conducted to train such a Artificial Intelligence algorithm that can access the large volume of tax data, tax codes, tax litigation, and relevant facts for a business enterprise. If a Artificial Intelligence model were to study tax and inquiries of a considerable number of taxpayers than it could learn what deductions to take, how those issues affect income tax liability or refund, and offer guidance (Milner & Berg, 2017)^[48]. The perfection of such kind of research would totally revolutionize the field of tax and its impacts on corporation individuals, company's accounts, and audit.

4.4 Literature on Artificial Intelligence in Detecting Accounting Fraud

It has been estimated that organizations in general lose around 5 percent of their annual revenues due to fraud and 1.6 percent of this revenue specifically relates to the fraud in company's financial statement (ACFE, 2014). Additionally, misallocation and misappropriation of resources generate misleading financial data that can harm the reputation and efficiency of the business. Financial statement fraud, (hereafter fraud) also increases the risk of running a business. For example, where company will lose the resources and gets a misleading statement, audit firms might have to face reputational costs, lawsuits, and loss of clients (Perols *et al.*, 2017)^[52]. Similarly, banks, investors and other financial institutions are more likely to make incorrect loan and investment decisions due to the wrong picture portrayed by the financial statements.

For years, fraud has been a major issue in the sectors like banking, medical, insurance etc. The main reason behind such rise in fraudulent activities is the increase in online transactions and emergence of different payment options. Therefore, with the advancements in technological infrastructure major threats of accounting frauds have also

evolved. Now a major portion of accounts transactions take place through online channels and the diversification in payment methods for users has resulted in increased fraudulent traps. Moreover, each transaction carries numerous prospects to be considered while identifying an anomaly. Both financial businesses and fraudsters are using sophisticated tools to improve their operations. Hence, it has become necessary for these companies to effectively identify and prevent the occurrence of fraud to avoid huge losses (Patil & Dharwadkar, 2017). For this reason, while transforming from manual to electronic world of accounting ecosystem, the only tool that can assist in identifying and preventing frauds is the use of Artificial Intelligence Algorithms.

There are two basic fraud detection systems, namely rule-based fraud detection and Artificial Intelligence based systems. Rule-based is the manual approach in which algorithms cannot recognize the hidden patterns while allowing the fraudsters to create and adapt to new techniques. This creates the need for a system that can analyze data and respond to new situations, and this is where Artificial Intelligence comes into play. It is an efficient way of fraud detection and since it has an extremely fast computing capabilities, it does not even require the guidance of a fraud analyst (Bonaccorso, 2017)^[10]. Therefore, it helps in reducing false positives for transactions and accounting records because the patterns are detected by an automated system for streaming transactions in a huge volume.

There are two Artificial Intelligence models that are used for detecting fraud in transactions that are supervised learning and un-supervised learning. The most common Artificial Intelligence algorithm used for that purpose is "*Isolation Forest Algorithm*." It is based on unsupervised learning algorithm for detecting fraud. It observes real time pattern of each transaction and isolates any anomaly arising unless it is rectified by the system. Unsupervised algorithms identify the subtle and hidden patterns from a given input without having any previous labeled data set. It scans large volume of inputs and flags events with potential loss pattern. Adaptive analytics continuously gives feedback of fraud analyst to the Artificial Intelligence system. Programmed to consider several parameters as location, date, amount, frequency etc. of the event, it aligns the probability of scam for a user. The supervised fraud detection algorithms are trained and tested with enormous data inputs and system tags them as fraudulent exemplars to predict the future results (Gogoi, Borah & Bhattacharyya, 2010). The tedious tasks once conducted by the fraud detection teams can now be effectively managed by quick AI tools reducing time consumption as well as costs.

To provide reliable and relevant financial data to the stakeholders, a company financial statements must be free from material misstatements. However, this is not possible if the company's financials contain unidentified frauds or scams. The business sector that is most prone to such kind of scams is financial sector. Therefore, use of Artificial Intelligence has become inevitable by the financial sector due to its ability to detect frauds at preliminary stages. It also informs the concerned user regarding any suspicious transaction and if system deems necessary it may request the client for further provision of information and keeping confidentiality of customer's information (Bonaccorso, 2017)^[10].

Contrary to the traditional fraud detection methods AI algorithms have expertise to process real time fraudulent actions. Feedzai, a fintech company claims that their AI algorithm is so trained that it can detect 95% of all the anomalies. For this reason, leading financial institutions are already using AI to combat fraud scams (Bazarbash, 2019). This helps the institutions in re-evaluating and altering their current strategy or functions based on the risks identified by the AI technology and present such financial information that could be relied upon.

Based on the credibility of the Artificial Intelligence tools to accurately produce and interpret financial result, in numerous well known financial institutions such as Bank of America, Morgan & Stanley and JPMorgan are spending a great amount of money to unlock the wealth of financial insight provided by the AI program. The primary reason behind such investment is to effectively manage the risk of fraud that these financial institutions face and to automate investments plan and techniques by finding the past hidden relationships from financial data to improve their strategy and operations. In short, AI can play a huge role in preventing and detecting fraud if applied correctly and rigorously (Perols *et al.*, 2017) [52]. Once the company succeeds in preventing fraud then its financial statements would automatically start to paint a true financial picture to its stakeholders. In short, rapid decision making, early anomaly finding, and business automation are just a few instances of the benefits that can be reaped from using AI algorithm.

4.5 Literature on Artificial Intelligence in Finance

Technological progression in these times has changed the way finance has been handled. It has made significant progress by reducing costs, enhancing customers' experience and increasing revenue by saving numerous organizations from potential losses and taking corrective actions whenever needed. AI is now further evolving into deep learning, thus, increasing the quality of information and saving costs (Dixon *et al.*, 2020) [23].

Nowadays, numerous operations of finance heavily rely on AI for running technical software. It offers a wide range of benefits to the companies including risk identification, risk assessment, credit worthiness of the client, credit history, financial footing etc. Similarly, bank reconciliation processes have been automated with the emergence of A.I. as past trends of transaction allocations are used to classify the new ones (Heaton *et al.*, 2016) [30].

This technology has also created features in finance that were not present before. For instance, there are some features that are not part of finance but are now embedded with in accounting software and are playing a significant role in performing accounting functions. Examples of such functions include chat bots, call center automation, and process automation. There is numerous software that entail such features (Emerson *et al.*, 2019) [26]. One of the well-known software in this regard is Xero. This software has a chat bot in cloud accounting platforms for small businesses that assists by answering the queries of customers concerning latest financial data, providing the amount of money due from people, balance left in the account, liabilities to be paid etc. (Ahmed, 2020) [2] Furthermore, the coding behaviors of invoice are automatically learned by accounting apps which saves the significant times of accountants and lower the risks of errors as after entering

the basic information about transactions, the systems automatically distribute the particular transaction to a specific account (Hedberg, 2020) [31].

The demand for accurate and timely financial projections, financial engineering and accounts estimates have rapidly increased in past few years. Similarly, a vast number of transactions takes place regularly in an organization, Artificial Intelligence provides the ultimate solution to assure smooth and accurate processing of information (De Prado, 2018) [20]. This Advanced technological progression of A.I has uplifted the landscape of finance, banking, and accounts analytics. Other primary benefits of AI include assets valuation and management, evaluation of credit worthiness, stock market forecasting, computation of risks associated and reduction of costs (Aziz & Dowling, 2019) [6].

Digitization in operations assisted greatly in detection of frauds, automated trading, and provision of effective advisory services to clients as these functions now heavily rely on neural based software. AI tools are keepers of customer's confidential information, it informs the concerned user for any suspicious transaction and if system deems necessary it may request the client for provision of additional information to draw conclusions. It offers a wide range of assistance to the companies including risk identification, mitigation, and prevention from rising again (Klaas, 2019) [39]. In addition to this, AI is now further evolving into deep learning. This means that it will accelerate the speed and quality of outcomes that it provides.

AI is also creating enormous impact in other financial advisory services. For instance, financial advisors use Algo-trading or Algorithmic trading to draw better trade decisions by analyzing tons of data sets of different markets simultaneously. Algo-trading have become High Frequency Trading (HFT) resulting in a trading at best prices and reduced costs by eliminating the human intrusion (Sezer & Ozbayoglu, 2018) [62]. It also generates profits at a much higher frequency as it acts proactively by observing the real time rise and fall in stock prices and give suggestions for sales and purchase for thousands of transactions each day (Chan, 2017).

With the development and breakthrough of artificial intelligence technology, the trend of transformation from empirical accounting to value accounting becomes more and more obvious. The integration of financial accounting and management accounting and the transformation from financial accounting to management accounting have become a general trend. For this reason, 41 scholars took "the transformation (integration) from financial accounting to management accounting" as the theme and discussed the differences between financial accounting and management accounting, the meaning and strategy of the transformation (integration).

Xu Anguo (2018) [58] believed that with the arrival of information age, the traditional financial accounting methods could not meet the requirements of enterprise development any more, management accounting thinking was more suitable for artificial intelligence requirements, and the transformation of corporate from financial accounting to management accounting was also needed for strategic management of an enterprise. Gao Lianshu (2018) also proposed that the transformation from financial accounting to management accounting conformed to the

macro-policy requirements of China, and also adapted to the changes in work functions brought by technical factors, and meet the market demand for talents.

Xu Qian (2018) ^[58] believed that the transformation from financial accounting to management accounting can achieve data homology, promote fine management of enterprises, improve efficiency, save costs, strengthen internal control, control risks, and create new value for enterprises. Zhu Ning (2019) thought that the transformation from financial accounting to management accounting is conducive to the overall improvement of accounting information quality, playing the management role of accountant, establishing the relationship between corporate strategy and financial performance, and increasing the efficiency and quality of enterprise management.

The use of Artificial Intelligence also increased the security aspect of financial data. The financial monitoring and data network security has improved due to the use of AI algorithms that assists in keeping the data secrecy and sustain confidentiality (Papernot *et al.*, 2016) ^[50]. Neural networks observe the normal and abnormal behaviors occurring within transaction sets and highlight those outliers indicating the likelihood of scams (Chio & Freeman, 2018) ^[17]. High processing capacities of Artificial Intelligence algorithms enable it to detect the real time fraudulent activities, take corrective actions against it and if the system deems necessary it may cease the operations unless validation is received. Some of the biggest companies in the world such as Adyen, PayPal, Payoneer, Stripe, Skrill etc. took a great interest in AI and invested heavily in the security system that is backed by it. For instance, the database of Payoneer clients is estimated to be in millions (Basnet *et al.*, 2008) ^[7]. Therefore, for such a large database a strong transactions security can only be retained by using AI algorithm.

4.6 Literature on Artificial Intelligence in Financial Projections

Financial forecasting refers to the projections made by enterprises concerning their expected revenues, cash flows, improved profits, and expenses (Cassar, 2009) ^[14]. These predictions are not just judgments, in fact, they are based on sophisticated algorithms which considers huge datasets with an underlying assumption that if factors remained unchanged then the financial trajectory can be drawn with some certainty (Villa & Valaitis, 2019) ^[68]. However, such factors cannot always remain static as businesses keep on evolving and at times change dramatically without any warning or indicator.

In dynamic circumstances the financial projections can easily go in vain due to lack of consideration towards the environment or data that is used as an input for financial forecasting. Therefore, this makes it necessary for accountants to incorporate the data that entails all the relevant dynamics of environment and adjust the prediction model accordingly. The inherent element of uncertainty affects businesses' efficiency, concerning long or short-term predictions. Therefore, in order to take pragmatic decisions, one must take into account the additional information relating to the real time stock market trends, fraud detection, consumers buying patterns and market segmentation to accurately predict the future (Jordan & Mitchell, 2015) ^[37]. However, mining and analyzing this big of a data exceeds the limits of human brainstorming and also of traditional

forecasting model capacities. This is where the need for high end technological tools embedded with artificial intelligence (A.I) arises and Artificial Intelligence (AI) comes into play as it accelerates the performance of the forecasting work with the great accuracy and speed.

Likewise, accountants as a financial advisor for the clients are responsible to effectively manage the financial records and information to provide stakeholders transparent statistics as and when required without any manipulation. This data is then used in one of the most crucial evaluations for business that is forecasting. AI in this regard assists in managing such data effectively and securely by automating many of the processes while at the same time providing productive insights in a variety of ways by using the input queries (Lantz, 2019) ^[44].

Financial forecasting considers the historic, market and financial information ascertained from the data managed by professional accountants and gets greatly impacted with the volume of data and its accuracy (Cassar, 2009) ^[14]. Enabled with high-tech processing capacity, machine assistants work faster and better than humans using traditional methods. Therefore, AI gives results in mere hours unlike the traditional approaches that might take weeks to answer the same queries (Lee & Ha, 2009) ^[45]. This capability of AI is what adds value towards the entity's decisions. Older methods and tools of forecasting also limit the reliability, innovation, and problem-solving abilities of an individual. Whereas Artificial Intelligence assists in making a quick and accurate predictions by using a large and complex data from numerous sources while at the same time maintaining the reliability of output (Prado, 2020) ^[55].

The advancement of AI has increased so much that most of the companies have now created their own A.I. program while some are using commercial A.I. Software. This means that those companies who might not be able to afford the creation and maintenance of A.I. program can now easily buy a pre trained AI program according to their need and requirements. Vendors of Artificial Intelligence program embed the AI algorithms that can be trained by the accountants and members of finance teams as and when needed (Brynjolfsson & McAfee, 2017) ^[11].

It has been observed that while manipulating the past data as an input for future projection, the AI algorithms not only identify and recognize new patterns, but they also reveal the past unknown relationships between various elements within the data set provided. This assists in forecasting potential errors, rectifying them, and preventing them from occurring again, hence, increasing the reliability of financial forecasts (Qiu *et al.*, 2016) ^[58]. Resultantly, the businesses decisions made based on the output provided by AI becomes more reliable and accurate. Therefore, it contributes towards increasing the wealth of the stakeholders, exploiting new opportunities, finding gateways, and highlighting areas of threats to be converted into strengths (Perrin & Roncalli, 2020) ^[53]. In short, incorporation of AI improves and expands the landscape of forecasting and productive analysis.

4.7 Blockchain Technology and AI

Another significant way in which accounting and finance could be affected by A.I. is using growing blockchain technology. The idea of this technology was first introduced by Stuart Haber and W. Scott Stornetta in 1991 (Bayer *et al.*, 1993). These two researchers sought to create such a

system in which time-stamps of documents could not be altered. This research led to the creation of a specific type data management technique in which data or information is stored in blocks that are chained together in chronological order. Therefore, the basic purpose of blockchain in accounting and finance is to enable the data encryption in the strings of blocks. In this way, track of time and date of a business transaction could be stored in blocks and can be used to realize the digital transfer of property (Hays, 2018). This technology could also be used to increase the efficiency of an audit process. Relevancy and reliability of data is extremely important in audit and assurance. Therefore, blockchain can increase the reliability of data by limiting the possibilities of tampering with an electronic record (Sutton & Samavi, 2017)^[66]. This means that it aids in keeping an extremely exact record of when a transaction has taken place and the person who has authorized it.

The integrity of business transactions can easily be investigated with the combination of blockchain technology and A.I. The computer will do much of the work, leaving only the final analysis for the auditor. In this situation, the main responsibility of the auditors would be to spend most of their time designing, reviewing, and checking how the information flows between systems (Kozlowski, 2018)^[42]. This alignment of Artificial Intelligence and blockchain, reduces the need for conducting regular audits at specific intervals and creates the possibility of an ongoing auditing. By doing this, auditors or management are notified automatically whenever a potential problem is detected by the system (Chedrawi & Howayeck, 2018)^[16]. This type of continuous monitoring is only possible with the help of Artificial Intelligence as it would be almost impossible for humans to actively check every transaction on a continuing basis.

5. Conclusion

Even though the concept of Artificial Intelligence has been developed since 1959, most of the research about impact of Artificial Intelligence in areas of accounting and assurance have been initiated in the past four to five years. The theoretical analysis of Artificial Intelligence and its impact on accounting and assurance has revealed that this technology has potential to unearth the numerous benefits. However, the technology is costly and challenging to implement. Companies have long understood the impact of this technology on the business operations as it enables accomplishment of complex business tasks with speed and great accuracy while working on a large quantum of data. However, the vast application of AI on various business tasks such as assessing risks, analyzing transactions, activities, and reviewing source documents etc. has just gotten the attention of many academics and practitioners. There is no doubt that artificial intelligence has positive impact on accounting field; and a consensus that basic accounting and audit work will be replaced by artificial intelligence has been reached. The transformation from financial accounting to management accounting has become an inevitable trend. However, with the deepening of artificial intelligence technology, further researches are needed as for how much the accounting work is replaced by artificial intelligence, and what the future accounting positions and accounting functions will be. The development of artificial intelligence drives the reconstruction of accounting discipline. Accounting

discipline must be integrated with other disciplines to cultivate composite accounting talents. But further researches are still needed as for the targeted disciplines of the integration, the integration depth, and the post-graduate talents cultivation mode, as well as how to realize the integration of accounting discipline and other disciplines, establish higher vocational colleges, applied universities and research-oriented universities in the current status of colleges and universities. Although the number of articles on the research of artificial intelligence in accounting field, published in last two years, has increased, yet the research is still in the initial stage. The research is independent and separated; and relevant theories and practical experiences are still not mature. The reform of accounting education and the transformation, cultivation and improvement of accounting talents both need to be guaranteed by policies and systems.

Currently, AI is actively used in making accounting estimates, forecasting, automating low-level business transactions and taxes, finding material misstatements, reading contracts, and identifying frauds. These uses have significantly increased the efficiency and effectiveness of accounting and auditing functions. However, where this technology has played a major role in reducing the workload and errors of financial and audit professionals, it has also threatened the job security of some of the individuals working in these fields. Some researchers believe that this technology will not threaten the jobs in this profession, it will create the opportunity for them to perform high level functions and add value to the organizations.

The researchers have also questioned the integrity of data fed to the AI algorithm, as biased and fraudulent data input would result in the inaccurate and ineffective outcome. Therefore, where this technology can be used to enhance the efficiency of the financial and audit processes, the challenges of increased knowledge requirement for accounts and audit professionals as well as requirement of unbiased input data would limit the scope of AI for some time. In short, the AI's ability to safely predict, identify and rectify the data can have many implications on the financial and audit profession, hence, researchers should be encouraged to further investigate the future uses and challenges of this technology.

References

1. Association of Certified Fraud Examiners (ACFE). Report to the Nations on Occupational Fraud and Abuse. Austin (TX): ACFE; 2014. Available from: <https://www.acfe.com/rttn/docs/2014-report-to-nations.pdf>
2. Ahmed A. From data to wisdom using artificial intelligence capabilities in accounting and finance professionals. *Talent Dev Excell*. 2020;12:1-15.
3. Apte C. The role of artificial intelligence in business optimization. In: Proceedings of the 27th International Conference on Artificial Intelligence (ICAI-10). Las Vegas (NV): CSREA Press; 2010. p. 1-2.
4. Atanasovski A, Bozinovska Lazarevska Z, Trpeska M. Conceptual framework for understanding emerging technologies that shape the accounting and assurance profession of the future. Skopje: Ss. Cyril and Methodius University; 2020.
5. Ayodele TO. Types of artificial intelligence algorithms. *New Adv Mach Learn*. 2010;3:19-48.

6. Aziz S, Dowling M. Artificial intelligence and AI for risk management. In: *Disrupting Finance*. Cham: Palgrave Pivot; 2019. p. 33-50.
7. Basnet R, Mukkamala S, Sung AH. Detection of phishing attacks: an artificial intelligence approach. In: *Soft Computing Applications in Industry*. Berlin: Springer; 2008. p. 373-383.
8. Bayer D, Haber S, Stornetta WS. Improving the efficiency and reliability of digital time-stamping. In: *Sequences II*. New York (NY): Springer; 1993. p. 329-334.
9. Bazarbash M. Fintech in financial inclusion: artificial intelligence applications in assessing credit risk. *IMF FinTech Notes*. 2019;19(01):1-31.
10. Bonacorso G. Artificial intelligence algorithms. Birmingham: Packt Publishing Ltd; 2017.
11. Brynjolfsson E, McAfee A. The business of artificial intelligence. *Harv Bus Rev*. 2017;95(4):1-20.
12. Burrell J. How the machine “thinks”: understanding opacity in artificial intelligence algorithms. *Big Data Soc*. 2016;3(1):2053951715622512.
13. Canhoto AI, Clear F. Artificial intelligence and artificial intelligence as business tools: a framework for diagnosing value destruction potential. *Bus Horiz*. 2020;63(2):183-193.
14. Cassar G. Financial statement and projection preparation in start-up ventures. *Account Rev*. 2009;84(1):27-51.
15. Chan EP. Machine trading: deploying computer algorithms to conquer the markets. Hoboken (NJ): John Wiley & Sons; 2017.
16. Chedrawi C, Howayeck P. Audit in the blockchain era within a principal-agent approach. In: *Information and Communication Technologies in Organizations and Society (ICTOS 2018)*. Cham: Springer; 2018. p. 1-12.
17. Chio C, Freeman D. Artificial intelligence and security: protecting systems with data and algorithms. Sebastopol (CA): O'Reilly Media Inc.; 2018.
18. Cho S, Vasarhelyi MA, Sun T, Zhang C. Learning from artificial intelligence in accounting and assurance. *J Emerg Technol Account*. 2020;17(1):1-19.
19. Clark A. The artificial intelligence audit CRISP-DM framework. *ISACA J*. 2018;1:1-8.
20. de Prado ML. Advances in financial machine learning. Hoboken (NJ): John Wiley & Sons; 2018.
21. Dickey G, Blanke S, Seaton L. Artificial intelligence in auditing: current and future applications. *CPA J*. 2019;89(6):16-21.
22. Ding K, Lev B, Peng X, Sun T, Vasarhelyi MA. Artificial intelligence improves accounting estimates: evidence from insurance payments. *Rev Account Stud*. 2020;25(3):1098-1134.
23. Dixon MF, Halperin I, Bilokon P. Artificial intelligence in finance. Berlin: Springer-Verlag; 2020.
24. Donepudi PK. Automation and artificial intelligence in transforming the financial industry. *Asian Bus Rev*. 2019;9(3):129-138.
25. Elmes A, Alemohammad H, Avery R, Caylor K, Eastman JR, Fishgold L, Estes L. Accounting for training data error in artificial intelligence applied to earth observations. *Remote Sens*. 2020;12(6):1034.
26. Emerson S, Kennedy R, O’Shea L, O’Brien J. Trends and applications of artificial intelligence in quantitative finance. In: *Proceedings of the 8th International Conference on Economics and Finance Research (ICEFR 2019)*. Singapore: IACSIT Press; 2019. p. 1-6.
27. Finlay S. Artificial intelligence and artificial intelligence for business: a no-nonsense guide to data-driven technologies. London: Relativistic; 2017.
28. Galarza M. The changing nature of accounting. *Strateg Finance*. 2017;98(8):50-58.
29. Hays D. Blockchain: an overview. *LSE Bus Rev*. 2018;1-6.
30. Heaton JB, Polson NG, Witte JH. Deep learning in finance. *arXiv preprint*. 2016;arXiv:1602.06561.
31. Hedberg N. Automated invoice processing with machine learning: benefits, risks and technical feasibility. Stockholm: KTH Royal Institute of Technology; 2020.
32. Helm JM, Swiergosz AM, Haeberle HS, Karnuta JM, Schaffer JL, Krebs VE, et al. Artificial intelligence and artificial intelligence: definitions, applications, and future directions. *Curr Rev Musculoskelet Med*. 2020;13(1):1-8.
33. Hooda N, Bawa S, Rana PS. Fraudulent firm classification: a case study of an external audit. *Appl Artif Intell*. 2018;32(1):48-64.
34. Hooda N, Bawa S, Rana PS. Optimizing fraudulent firm prediction using ensemble machine learning: a case study of an external audit. *Appl Artif Intell*. 2020;34(1):20-30.
35. Issa H, Sun T, Vasarhelyi MA. Research ideas for artificial intelligence in auditing: the formalization of audit and workforce supplementation. *J Emerg Technol Account*. 2016;13(2):1-20.
36. Jakhar D, Kaur I. Artificial intelligence, artificial intelligence and deep learning: definitions and differences. *Clin Exp Dermatol*. 2020;45(1):131-132.
37. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. *Science*. 2015;349(6245):255-260.
38. Kaya CT, Türkyılmaz M, Birol B. Impact of RPA technologies on accounting systems. *Muhasebe ve Finansman Dergisi*. 2019;(82):1-18.
39. Klaas J. Artificial intelligence for finance: principles and practice for financial insiders. Birmingham: Packt Publishing Ltd; 2019.
40. Kogan A, Mayhew BW, Vasarhelyi MA. Audit data analytics research an application of design science methodology. *Account Horiz*. 2019;33(3):69-73.
41. Kokina J, Davenport TH. The emergence of artificial intelligence: how automation is changing auditing. *J Emerg Technol Account*. 2017;14(1):115-122.
42. Kozlowski S. An audit ecosystem to support blockchain-based accounting and assurance. In: *Continuous Auditing: Theory and Application*. Bingley (UK): Emerald Publishing Limited; 2018. p. 299-313.
43. Kumar RSS, Wicker A, Swann M. Practical artificial intelligence for cloud intrusion detection: challenges and the way forward. In: *Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security*. New York (NY): ACM; 2017. p. 81-90.
44. Lantz B. Artificial intelligence with R: expert techniques for predictive modeling. Birmingham: Packt Publishing Ltd; 2019.
45. Lee JH, Ha SH. Recognizing yield patterns through hybrid applications of artificial intelligence techniques. *Inf Sci*. 2009;179(6):844-850.

46. Lev B, Li S, Sougiannis T. Accounting estimates: pervasive, yet of questionable usefulness. *Rev Account Stud.* 2005;10(4):455-491.

47. Michie D, Spiegelhalter DJ, Taylor CC. Machine learning. *Neural and Statistical Classification*. London: Ellis Horwood; 1994. p. 1-298.

48. Milner C, Berg B. Tax analytics artificial intelligence and machine learning level 5. London: PricewaterhouseCoopers Advanced Tax Analytics & Innovation; 2017.

49. Mohammed M, Khan MB, Bashier EBM. Machine learning: algorithms and applications. Boca Raton (FL): CRC Press; 2016.

50. Papernot N, McDaniel P, Sinha A, Wellman M. Towards the science of security and privacy in machine learning. *arXiv preprint.* 2016;arXiv:1611.03814.

51. Patil PS, Dharwadkar NV. Analysis of banking data using machine learning. In: *Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)*. Piscataway (NJ): IEEE; 2017. p. 876-881.

52. Perols JL, Bowen RM, Zimmermann C, Samba B. Finding needles in a haystack: using data analytics to improve fraud prediction. *Account Rev.* 2017;92(2):221-245.

53. Perrin S, Roncalli T. Artificial intelligence optimization algorithms and portfolio allocation. In: *Artificial Intelligence for Asset Management: New Developments and Financial Applications*. London: Risk Books; 2020. p. 261-328.

54. Petroni K, Beasley M. Errors in accounting estimates and their relation to audit firm type. *J Account Res.* 1996;34(1):151-171.

55. Prado MML. Artificial intelligence for asset managers. Cambridge: Cambridge University Press; 2020.

56. PricewaterhouseCoopers. Artificial intelligence in US tax regulations. New York: PwC; 2017. Available from: <https://www.pwc.com/us/en/services/tax/library/machine-learning-in-tax.html>

57. PricewaterhouseCoopers. How tax is leveraging AI including artificial intelligence in 2019. London: PwC; 2019. Available from: <https://www.pwc.com/gx/en/tax/publications/assets/how-tax-leveraging-ai-machine-learning-2019.pdf>

58. Qiu J, Wu Q, Ding G, Xu Y, Feng S. A survey of artificial intelligence for big data processing. *EURASIP J Adv Signal Process.* 2016;2016(1):67.

59. Rice JR. Numerical methods in software and analysis. Oxford: Elsevier; 2014.

60. Saleiro P, Kuester B, Hinkson L, London J, Stevens A, Anisfeld A, *et al.* Aequitas: a bias and fairness audit toolkit. *arXiv preprint.* 2018;arXiv:1811.05577.

61. Bowling S, Meyer C. How we successfully implemented artificial intelligence in audit. *J Accountancy.* 2019;227(5):26-28.

62. Sezer OB, Ozbayoglu AM. Algorithmic financial trading with deep convolutional neural networks: time series to image conversion approach. *Appl Soft Comput.* 2018;70:525-538.

63. Stancheva-Todorova EP. How artificial intelligence is challenging the accounting profession. *J Int Sci Publ Econ Bus.* 2018;12:126-141.

64. Sun T. Applying deep learning to audit procedures: an illustrative framework. *Account Horiz.* 2019;33(3):89-109.

65. Sun T, Vasarhelyi MA. Deep learning and the future of auditing: how an evolving technology could transform analysis and improve judgment. *CPA J.* 2017;87(6):34-39.

66. Sutton A, Samavi R. Blockchain-enabled privacy audit logs. In: *Proceedings of the International Semantic Web Conference*. Cham: Springer; 2017. p. 645-660.

67. Tiwari A, Hooda N. Artificial intelligence framework for audit fraud data prediction. *Int J Account Inf Syst.* 2018;29:1-12.

68. Villa AT, Valaitis V. Artificial intelligence projection methods for macro-finance models. *Econ Res Initiatives Duke Work Pap.* 2019;1-34.

69. Han X, Liu B. Constraints and countermeasures of accountant training in the age of artificial intelligence. *J Lianyungang Teach Coll.* 2019;36(2):92-95. [in Chinese]

70. Wu X, Tian H. A comparative study of Chinese and foreign artificial intelligence audit research hotspots and evolution knowledge maps. *Sci Technol Manag Res.* 2019;39(10):185-191. [in Chinese]

71. Liu J, Liao J, Dong H. Artificial intelligence and auditing change. *Commun Finance Account.* 2019;(13):19-25. [in Chinese]

72. Zhang J. Research on accounting professional reform in higher vocational colleges from the vision of "Internet +" artificial intelligence. *Chin Vocat Tech Educ.* 2019;(11):58-63. [in Chinese]

73. Peng Q, Wang H, Wang H. Research on the risks and countermeasures of accounting artificial intelligence. *Friends Account.* 2019;(5):114-119. [in Chinese]

74. Zhang Y, Liu H, Li Z. Innovative education's demand for artificial intelligence quotient under "smart finance": a case study of data analysis. *Finance Account Mon.* 2018;(24):98-104. [in Chinese]

75. Tang Y. Discussion on the transformation of enterprise financial management in the age of artificial intelligence. *Finance Account.* 2018;(23):69-69. [in Chinese]

76. Qi B. Analysis of financial robot process automation from the artificial intelligence perspective. *Finance Account.* 2018;(17):58-59. [in Chinese]

77. Wang Y. The change of accounting education in the era of artificial intelligence. *Sci Technol Econ Mark.* 2018;(4):167-169. [in Chinese]

78. Wang J, Su Y. Artificial intelligence and accounting model reform. *Commun Finance Account.* 2017;(22):41-43. [in Chinese]

79. Chen T. Analysis of the application of artificial intelligence in the accounting field: taking Deloitte financial robot as an example. *Commer Account.* 2018;(10):77-78. [in Chinese]

80. Zhou Y, Jia X. Application of artificial intelligence in financial business integration. *Finance Account Mon.* 2007;(31):60-62. [in Chinese]

81. Li X, Chen Y. Research on the demand and training path of accounting talents under the background of artificial intelligence. *J Jilin TV Radio Univ.* 2018;(5):91-92. [in Chinese]

82. Liang R, Shi J. The application of artificial intelligence in finance decision supporting systems. *Comput Eng Appl.* 2001;(8):118-121. [in Chinese]

83. Feng J. Research on artificial intelligence financial

decision supporting systems. *Shanghai Account.* 1999;(4):39-41. [in Chinese]

84. Deng W. A summary of accounting research in the age of artificial intelligence. *Finance Account Int Commer.* 2018;(5):86-88. [in Chinese]

85. Zhou Y, Fang Y, Tang Y. Analysis of the irreplaceability of accounting personnel under the development of artificial intelligence. *China Mark.* 2018;(11):98-102. [in Chinese]

86. Bai Y. Analysis of the impact and transformation of artificial intelligence on financial personnel. *China Township Enterp Account.* 2018;(4):257-258. [in Chinese]

87. Chen M. The impact of artificial intelligence shock on basic accounting practitioners. *Mod Enterp.* 2018;(4):82-83. [in Chinese]

88. Wu W. The impact of artificial intelligence on audit work. *Chin Foreign Entrepr.* 2018;(10):155-159. [in Chinese]

89. Zhang Y. On the application of artificial intelligence in enterprise financial management. *China J Commer.* 2018;(6):16-17. [in Chinese]