

Asian Journal of Management and Commerce

E-ISSN: 2708-4523
P-ISSN: 2708-4515
Impact Factor (RJIF): 5.61
AJMC 2026; SP-7(1): 09-14
© 2026 AJMC
www.allcommercejournal.com
Received: 12-11-2025
Accepted: 15-12-2025

Manisha N
Student, School of
Management Studies, REVA
University, Karnataka, India

Daniel Kilala
Student, School of
Management Studies, REVA
University, Karnataka, India

Mahesh Rawal
Student, School of
Management Studies, REVA
University, Karnataka, India

Dr. Maria Boaler
Assistant Professor, School of
Management Studies, REVA
University, Karnataka, India

Corresponding Author:
Manisha N
Student, School of
Management Studies, REVA
University, Karnataka, India

Artificial intelligence and telehealth in the diagnosis and remote patient monitoring of Alzheimer's disease

Manisha N, Daniel Kilala, Mahesh Rawal and Maria Boaler

DOI: <https://www.doi.org/10.22271/27084515.2026.v7.i1Sa.962>

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects millions of people around the world and is associated with early diagnosis, long-term management. With the advances of artificial intelligence (AI) and telehealth, healthcare delivery has been transformed into innovative ways to diagnose and remotely monitor AD patients. In this study, we qualitatively analyze the current literature, expert interviews, and case studies to explore the integration of AI driven technologies and telehealth platforms to AD diagnosis and remote patient care.

What the findings show is that AI diagnostic tools, such as machine learning (ML) algorithms, natural language processing (NLP), and deep learning models, have made early AD detection much more accurate. It also aids in risk stratification that improves the efficiency of the clinical decision making and mitigates the risk of diagnostic errors.

Additionally, telehealth applications including wearable sensors, mHealth apps, and Remote Patient Monitoring (RPM) systems allow continuous monitoring of cognitive and behavioral changes. Digital health interventions augment the engagement of patients, facilitate real time symptom tracking and help caregivers through timely alerts and personalized care plans. Besides chatbots and virtual assistants with AI, patient communication and cognitive training is further enhanced, improving overall quality of life.

Such advances are however limited by challenges in data privacy, algorithmic bias, interoperability and patient acceptance. In addition, ethical considerations of informed consent and ensuring equitable access to AI driven telehealth solutions needs to be addressed. To make sure AI and telehealth are safe and effective within AD care, regulatory frameworks and multidisciplinary cooperation are essential. The findings of this qualitative analysis highlight the transformative power of AI and telehealth in changing the way AD is diagnosed remotely. Healthcare providers can provide proactive, personalized, and scalable AD management solutions through leveraging AI powered analytics and telehealth infrastructure, thereby enhancing patient's outcomes and relieving the burden on the healthcare systems. These technologies need further research to optimize, address ethical concerns, and recommend standardized protocols that can be used widely in the clinical setting.

Keywords: Alzheimer's disease, artificial intelligence, telehealth, diagnosis, monitoring, qualitative study

Introduction

Alzheimer's disease (AD) is a progressive brain disease that primarily impacts memory, thinking, and behavior, leading to severe intellectual deterioration. AD is among the most prevalent causes of dementia, especially in older adults, and poses significant challenges to the health care systems globally. Early detection and continued monitoring of Alzheimer's disease are critical to successful management since early interventions will slow the development of the disease and improve patients' quality of life. Diagnosis of Alzheimer's disease was in the past through a combination of clinical evaluation, neuroimaging, and biomarkers that are time-consuming, invasive, and machinery dependent. Furthermore, tracking the progression of disease has most frequently been achieved by serial office visits, and these may be troublesome for both caregivers and patients.

More recently, the coming together of Artificial Intelligence (AI) and Telehealth has also emerged as a novel solution to diagnose and remotely monitor Alzheimer's disease. Machine learning and deep learning algorithms of AI have found application in interpreting complex data, unearthing patterns, and making high-accuracy predictions.

Meanwhile, Telehealth technologies that facilitate remote consultation, patient monitoring, and data exchange are opening new possibilities in treating Alzheimer's patients with geographical distances from standard clinical settings. This paper explores the potential of Artificial Intelligence and Telehealth in remote diagnosis and monitoring of Alzheimer's disease. It explains how the two technologies are being integrated together to accelerate early diagnosis, track disease advancement, and facilitate improved care and support for caregivers as well as patients. The merging of AI and Telehealth also promises to make future management of Alzheimer's disease more personalized, accessible, and streamlined.

Literature Review

Alzheimer's disease (AD) is a major worldwide health issue due to its progressive nature and significant impact on patients as well as healthcare systems worldwide. The need for early diagnosis and continuous management to reduce disease progression and enhance patient outcomes cannot be overstated, but these traditional diagnostic approaches, such as clinical evaluation, imaging, and biomarker testing, are generally time-consuming, costly, and invasive (Bateman *et al.*, 2019) [2]. Recent technological breakthroughs in AI and telemedicine have surfaced as revolutionary technologies, greatly enhancing the early diagnosis and remote monitoring of AD. AI tools, such as ML algorithms, NLP, and deep learning patterns, have made great strides in identifying early symptoms of AD through analyzing big data, like speech patterns, neuroimaging, and behavioral data (Davatzikos *et al.*, 2011; Liu *et al.*, 2020) [6, 9]. Research has indicated that ML algorithms, for instance, are capable of correctly classifying those most susceptible to AD with subtle differences in cognition that are possibly imperceptible through conventional detection methods and enhance diagnostic speed and quality (Feng *et al.*, 2018) [7]. Moreover, AI has made improved risk stratification possible by helping doctors identify patients most likely to deteriorate cognition in a relatively short timeframe, enabling personalized treatment regimens, maximizing clinical decision-making, and minimizing error diagnosis (Choi *et al.*, 2021) [4]. Telehealth-wise, wearable's, mHealth apps, and RPM platforms have transformed healthcare providers' methods of monitoring cognitive and behavioral shifts in AD patients into a continuous, real-time sequence of data tracking. Remote monitoring and consultation are facilitated by these technologies, which can help patients remote from healthcare facilities or with mobility issues (Yue *et al.*, 2021) [12]. In addition, digital health interventions have greatly boosted patient activation by offering personalized care plans and reminders so that caregivers can better manage symptoms at the right time and thereby enhance patient care and caregiver support (O'Neil *et al.*, 2022) [11]. Along with this, AI chatbots and virtual assistants have been integrated into these platforms to enable patient communication, cognitive training, and emotional support, hence improving the overall quality of life for patients (Gergel *et al.*, 2021) [8]. Nevertheless, much as these technologies hold promise, there are a number of challenges that still remain. Data privacy concerns, algorithmic bias, and interoperability remain critical issues that hinder their mass adoption (O'Neil *et al.*, 2022) [11]. Patient information used in AI systems are a matter of ethical concerns to do with consent and handling sensitive

data, while algorithmic prejudice poses the possibility of discriminatory treatment across different groups (Dastin, 2018) [5]. Additionally, affording equal access to such technology, especially by disadvantaged groups lacking the ability for or exposure to digital device or connection opportunity, is still an issue at hand (Avent *et al.*, 2020) [1]. To address these challenges, regulatory systems need to be established that will guarantee the safe, ethical, and effective utilization of telehealth and AI in AD therapy with regard to special attention to transparency, equity, and data protection (Mittelstadt *et al.*, 2016) [10]. Generally, though AI and telehealth technologies offer the potential to re-engineer AD diagnosis and treatment, additional research is needed to maximize their usefulness, minimize the issues around ethics, and create standardized clinical guidelines for their use (Benda *et al.*, 2020) [3]. The technologies promise not just to improve patient outcomes but also to alleviate burden on the healthcare system, ultimately creating more customized, scalable, and accessible AD care solutions.

Research Methodology

To thoroughly investigate the effects of AI-enhanced Remote Patient Monitoring (RPM) and telehealth on the diagnosis and ongoing care of Alzheimer's disease, this study employs qualitative research methodologies. The objective is to assess how effectively AI-driven RPM systems manage Alzheimer's-related cognitive and behavioral symptoms and to evaluate AI's contribution to improving clinical outcomes and quality of life for patients and caregivers. Physicians in three private hospitals in Bangalore were interviewed. A qualitative case-based and content analysis design was employed to gain a better understanding of the integration of AI and telehealth into Alzheimer's care workflows. Purposive sampling was employed to select participants, ensuring that the selected physicians had relevant experience and roles in Alzheimer's diagnosis, treatment, or digital health implementation. Data were gathered during semi-structured interviews, done in-person and by phone, depending on respondent availability. Interviews took about 30 minutes and addressed a variety of issues including diagnostic precision, patient activation, behavioral monitoring, and care management with AI and telehealth platforms. All hospital and respondent data were anonymized to protect confidentiality. The first part of the study entailed data collection on background information regarding hospital operations and application of AI and telehealth in a clinical environment. Secondary data were collected via review of anonymized medical records with a focus on quantifiable clinical results in the form of early detection accuracy, hospital readmission reduction, and patient/caregiver satisfaction.

Questions asked

- Is AI tools more effective than traditional methods in helping with early Alzheimer's diagnosis?
- Do your AI systems track the progression of Alzheimer's using specific biomarkers or cognitive markers?
- Are there significant challenges to integrating AI and telehealth into Alzheimer's care workflows?
- Are patients and caregivers generally accepting of AI and telehealth in managing Alzheimer's?
- Has the use of AI in remote patient monitoring and telehealth improved patient outcomes or quality of life?

- Does AI provide specific benefits in monitoring cognitive and behavioral complications in Alzheimer's patients?

- Are there significant economic implications for healthcare institutions adopting AI-enabled RPM systems for Alzheimer's care?

Table 1: Profile of interview participants and data collection methods

Code	Profile	Participants profile	Interview type
Hospital A	Ownership: Private Headquarter: Bangalore Area served: Global	Designation: Doctor Experience: 10 years Location: Bangalore Neuropsychologist	Face to face
Hospital B	Ownership: Private Headquarter: US Area served: National	Designation: Doctor Experience: 6years Location: Bangalore Digital expert	Telephonic interview
Hospital C	Ownership: Corporate Headquarter: Jammu Area served: National	Designation: Doctor Experience: 8years Location: Bangalore Geriatrician	Telephonic interview

Source: Authors analysis

Analysis

Is AI tools more effective than traditional methods in helping with early Alzheimer's diagnosis?

- **Doctor A:** Yes, with brain scans or speech, AI can detect subtle early signs of Alzheimer's that doctors might miss. Because it's not a replacement for clinical judgment.
- **Doctor B:** Yes, The limits of traditional tests: AI can more objectively find early issues when symptoms are still mild.
- **Doctor C:** Yes, Sometimes AI analyzes MRI scans with better accuracy than humans. It's become a powerful early detection tool.

Do your AI systems track the progression of Alzheimer's using specific biomarkers or cognitive markers?

- **Doctor A:** AI systems can indeed track Alzheimer's progression based on biomarkers such as beta-amyloid and tau proteins present in brain scans or CSF samples. They help predict how quickly the disease may progress.
- **Doctor B:** Also many AI models look at cognitive markers changes in memory, speech, or attention, over time. AI can detect patterns in test scores or speech that can map decline even before clinical symptoms worsen.
- **Doctor C:** Longitudinal brain imaging is used by advanced AI tools to monitor changes in brain volume, especially in the hippocampus. These structural changes are useful indicators of disease progression.

Are there significant challenges to integrating AI and telehealth into Alzheimer's care workflows?

- **Doctor A:** A big problem is digital access, several older patients lack the tech skills or devices to take full advantage of telehealth, and therefore AI can't reach so many.
- **Doctor B:** To integrate AI into care, however, clinician trust and training are necessary. However, many providers are still hesitant to depend on machine-generated insights for a serious diagnosis.
- **Doctor C:** There are also data privacy and interoperability concerns. Patient info has to flow securely between AI tools, EHRs, and telehealth systems without creating new risks.

Are patients and caregivers generally accepting of AI and telehealth in managing Alzheimer's?

- **Doctor A:** However, when they can see how AI and telehealth can take some of the burden off of them like in getting faster assessments or remote check-ins without travel; they are open to AI and telehealth.
- **Doctor B:** However, many patients, especially the older ones, will be hesitant at first because they are not used to technology. However, with support, acceptance develops with time.
- **Doctor C:** Trust is key. Families are more likely to embrace AI when they know how AI can help, not replace, human care.

Has the use of AI in remote patient monitoring and telehealth improved patient outcomes or quality of life?

- **Doctor A:** Remote monitoring with AI allows us to detect changes early, and if we intervene early, we slow cognitive decline and reduce emergency visits.
- **Doctor B:** Patient engagement and access has improved especially in rural areas and that's leading to better medication adherence and fewer missed appointments.
- **Doctor C:** AI tools that help track symptoms and flag concerns also help ease stress and improve caregivers' confidence, which leads to a better quality of life overall, said caregivers.

Does AI provide specific benefits in monitoring cognitive and behavioral complications in Alzheimer's patients?

- **Doctor A:** AI is able to monitor mild cognitive changes over time such as speech patterns, memory slips, or attention changes that may not be evident during brief clinic appointments.
- **Doctor B:** AI aids in the identification of behavioral complications such as agitation, sleep problems, or wandering through analysis of sensor or wearables data, allowing for earlier intervention.
- **Doctor C:** These instruments enable ongoing, objective monitoring in naturalistic environments-something that standard tests aren't well-suited to provide.

Are there significant economic implications for healthcare institutions adopting AI-enabled RPM systems for Alzheimer's care?

- **Doctor A:** Upfront expenses may be steep hardware, software, and training but over time, AI-RPM can cut back on hospitalizations, ER trips, and caregiver burden, making it cost-effective.
- **Doctor B:** Institutions that invest in AI-powered RPM tend to realize operational efficiencies, such as reduced in-person visits and improved clinical resource utilization.
- **Doctor C:** By facilitating early intervention and retarding disease progression, AI technologies could reduce overall treatment costs while enhancing quality of care.

AI-driven Remote Patient Monitoring (RPM) is transforming the care of Alzheimer's by making it possible to monitor cognitive and behavioral shifts in real-time. It facilitates better early detection, enables timely intervention, and helps alleviate healthcare loads. These tools also aid chronic disease and post-operative care through enhanced outcomes and resource allocation. Yet, these challenges need to be overcome, data privacy and accessibility for equitable and beneficial use.

Practical implication

Alzheimer's is a progressive brain disease that slowly destroys memory, thinking, and behavior. It poses huge obstacles to early identification, ongoing monitoring, and lifetime care. Historically, monitoring the onset of Alzheimer's has depended extensively upon repeated in-person visits to physicians. The visits, though unavoidable, also are hugely taxing on patients and caregivers alike particularly as disease progresses and mobility or cognitive impairment adds to travel complications. Rescue is on the horizon, thanks to advances in artificial intelligence (AI) and telehealth that are starting to transform the diagnosis and treatment of Alzheimer's disease, enabling novel approaches to delivering consistent, high-quality care from afar. AI, paired with remote patient monitoring (RPM) platforms, provides the means to identify faint changes in cognition, behavior, and physical activity that otherwise may go undetected in conventional clinical environments. Utilizing the smart technologies worn devices, smartphones, and home sensors AI codes can track and assess speech, motor function, facial expression, memory storage, and even mood data in real-time. These types of systems are constructed to detect patterns and recognize anomalies that can indicate either the initial onset of Alzheimer's or a relapse of already symptomatic states. Through real-time analysis, this will enable treatments to be altered by physicians or preventive measures suggested earlier before the onset of severe deterioration. Natural Language Processing (NLP) is one of the brightest prospects for AI in this case, where a person can get analysis conducted on their speech or written communications. Declines in vocabulary complexity level, speech repetition, or breakdown of sentence construction, for instance, may be indicative of cognitive loss. Such linguistic patterns may be detected by artificial intelligence much sooner than they might occur during a standard check-up, and therefore possibly allow earlier diagnosis. Similarly, computer vision technologies can be employed to measure facial expression and body movement to recognize emotional changes like apathy, anxiety, or agitation symptoms most often linked with Alzheimer's. These non-invasive AI-based tools provide a

richer and longer-term picture of the patient's condition than sporadic clinical visits. Apart from early diagnosis, AI-based RPM systems play a crucial role in post-diagnosis treatment. They can monitor if or not patients are taking medication as prescribed, maintaining daily routines, sleeping well, or exercise activities that can benefit the brain. Such systems also detect possibly dangerous behaviors such as a patient leaving home or in danger of falling and notify caregivers or healthcare professionals automatically. This not only prevents emergencies but also gives peace of mind to families that their loved one is being taken care of, even remotely. Telehealth platforms based on AI have other advantages by allowing virtual check-ins and consultations. The platforms enable health practitioners to administer cognitive tests, provide behavioral therapy, and monitor real-time health information without the patient leaving home. With the aid of AI, these platforms can even provide individualized care plans from patterns in patient behavior and health metrics. Care planning becomes person-specific to provide treatments and recommendations at the individual stage of disease development. AI-based systems also have the ability to make the patient and caregiver experience better by using interactive options that are appealing to users. For example, cognitive games, tailored reminders, and encouraging messages can be provided on a daily basis by easy-to-use apps. These devices enable patients to become active participants in their own treatment and offer them a feeling of routine and achievement, which are especially important to maintaining quality of life and mental well-being. Though there are numerous benefits to incorporating AI and telehealth into the care of Alzheimer's patients, there are a few things that must be ironed out in order to get it to work. Usability is one of these issues most older individuals, particularly those with early to mid-Alzheimer's, will struggle with sophisticated technology. Therefore, these systems themselves need to be created with simplicity, lucidity, and ease of use as top priorities. Caregivers must also be trained and educated to utilize these tools effectively. Clinically, there must be faith in AI technology. Healthcare professionals must have faith that the information that is obtained through AI is correct and reliable, and that it will complement, not substitute, their clinical experience and professional judgment. Economically, the long-term advantages of AI-enabled RPM are enormous. By detecting problems sooner and decreasing hospital visits, they can help contain healthcare expenses down the line significantly. They cut down on demand for on-site, full-time care as well, making people more independent in their condition. Though, the initial investment of AI technology, along with apprehensions over data privacy issues, cybersecurity breaches, and conformance to legislation, can make widespread use arduous and in particular for small practices or rural health units lacking sufficient finance. Overall, the convergence of telehealth systems and artificial intelligence systems into dealing with and tending to Alzheimer's disease constitutes a great advance in neurological medical care development. This convergence is now able to deliver more anticipatory, more personalized, and more scalable solutions in care. As technology advances, it has vast potential to not only enhance outcomes for people with Alzheimer's, but also to alleviate the emotional, physical, and financial strain on families and the wider healthcare system.

Conclusion

Artificial Intelligence (AI) integrated with Remote Patient Monitoring (RPM) technology is ushering a paradigm change in the treatment and diagnosis of Alzheimer's disease. These new technologies provide a variety of significant benefits, chief among them the capacity to identify early stages of cognitive decline, to monitor for ongoing alterations in behavior and body status, and to adapt care plans to individual patients' needs. Combining AI with telehealth technology constitutes an even fuller and more efficient approach to the management of Alzheimer's, particularly for home-dwelling patients. This method minimizes the need for repeated, frequently draining clinical consultations, which not only alleviates the physical and psychological load on patients but also comforts caregivers who desperately need it. At the core of AI-based RPM systems is their ability to track a patient's cognitive and physical status in real-time. This is done through current technologies like wearable devices, home-installed smart sensors, and digital cognitive tests. These sensors collect information that is processed by sophisticated AI algorithms capable of identifying patterns and anomalies in behavioral or health states. This information allows medical professionals to detect rising complications or subclinical alterations in behavior that would otherwise be unapparent. In Alzheimer's patients, this sort of pervasive, adaptive monitoring is essential as it makes possible early interventions that can retard the advancement of disease and substantially improve the quality of life. In addition, the technology provides a perfect solution for rural or underdeveloped area patients, where access to specialized neurological care is typically restricted. For the doctor, AI-augmented RPM means a better, data-rich environment in which to diagnose and make decisions. Predictive analytics on continuous monitoring of the behavior of a patient and physiological information can result in more precise diagnoses and can enable the creation of highly individualized care plans. Individualized care enables optimum use of medical intervention as a measure because every patient receives proper treatment at the proper time. But the catch of the success of these technologies is giving adequate training and support to both caregivers and healthcare professionals to integrate AI tools into their day-to-day routine. The technology must augment existing care models, not complicate them. From a cost-benefit perspective, while getting AI and telehealth infrastructure in place can be costly initially, the long-term economic benefits are compelling. By reducing hospitalization, curtailing instances of medical emergencies, and simplifying disease management, these technologies have the ability to reduce healthcare costs overall. This is especially the case in the instance of Alzheimer's, which tends to demand exceedingly long and complex care. However, small hospitals and rural hospitals can struggle with the implementation of such systems, and that is why there must be developed flexible and cost-effective models that are scalable to meet various organizational capabilities. As much potential as AI-based RPM holds, there remain areas that are crucial to study and research. More studies are needed to determine the effect of these technologies on patient outcomes in the long term, particularly concerning early diagnosis and home treatment of Alzheimer's. Usability is also a huge consideration: creating these systems so that they are usable by large groups of people, including older individuals who might

already be mentally compromised. The use of friendly interfaces and proper training are crucial steps towards successful adoption. Equally important are privacy issues and data protection. Since the systems deal with sensitive personal and health information, high levels of cyber security as well as patient privacy should be preserved for the aim of establishing confidence and acceptability by the consumers. Generally speaking, the novel integration of AI and telehealth has a lot of potential in revolutionizing Alzheimer's care as a more active, individualized, and convenient system. These technologies provide new means of supporting carers and patients, easing pressure on the health system, and improving the overall quality of life of victims of the disease. Unlocking this potential will rely on ongoing innovation, strict clinical assessment, and strong collaboration between clinicians, researchers, technologists, and policy makers. Through collaboration, all these stakeholders can provide assurance that AI and telehealth become powerful tools in the global battle against Alzheimer's disease.

References

1. Avent B, Rogers KR, Livingston G. Bridging the digital divide in Alzheimer's care. *Int J Geriatr Psychiatry*. 2020;35(8):793-800. DOI: 10.1002/gps.5302.
2. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, *et al*. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. *N Engl J Med*. 2012;367(9):795-804. DOI: 10.1056/NEJMoa1202753.
3. Benda NC, Meadors ML, Hettinger AZ, Ratwani RM. Addressing safety and usability of telehealth systems for patients with Alzheimer's disease. *Human Factors*. 2020;62(5):678-688. DOI: 10.1177/0018720819874184.
4. Choi H, Jin KH. Alzheimer's disease neuroimaging initiative. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. *Behav Brain Res*. 2021;388:112599. DOI: 10.1016/j.bbr.2020.112599.
5. Dastin J. Amazon scraps secret AI recruiting tool that showed bias against women. *Reuters* [Internet]. 2018 Oct 10 [Cited 2026 Jan 14]. Available from: <https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G>.
6. Davatzikos C, Bhatt P, Shaw L M, Batmanghelich KN, Trojanowski JQ. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. *Neurobiol Aging*. 2011;32(12):2322.e19-2322.e27. DOI: 10.1016/j.neurobiolaging.2010.05.023.
7. Feng Q, Zhang X, Zhou Y. 3D Convolutional neural network with SVM classifier for Alzheimer's disease diagnosis using structural MRI. *J Healthc Eng*. 2018;2018:1-9. DOI: 10.1155/2018/9750901.
8. Gergel T, Owen GS, Fistein E, Owen AM. Chatbots in dementia care: Promises and pitfalls. *J Med Internet Res*. 2021;23(6):e25006. DOI: 10.2196/25006.
9. Liu M, Cheng D, Yan W. Classification of Alzheimer's disease by combination of convolutional and recurrent neural networks using FDG-PET images. *Front Neuroinform*. 2020;14:5. DOI: 10.3389/fninf.2020.00005.
10. Mittelstadt BD, Allo P, Taddeo M, Wachter S, Floridi L. The ethics of algorithms: Mapping the debate. *Big*

Data Soc. 2016;3(2):2053951716679679. DOI: 10.1177/2053951716679679.

11. O'Neil CA, Li Y, Kaminski P. Digital health interventions to support Alzheimer's disease patients and caregivers: A review. JMIR Aging. 2022;5(3):e31954. DOI: 10.2196/31954.

12. Yue L, Wang T, Wang J, Li C. The role of wearable devices in Alzheimer's disease. Front Aging Neurosci. 2021;13:643135. DOI: 10.3389/fnagi.2021.643135.