

E-ISSN: 2708-4523

P-ISSN: 2708-4515

Impact Factor (RJIF): 5.61

AJMC 2026; SP-7(1): 21-28

© 2026 AJMC

www.allcommercejournal.com

Received: 24-11-2025

Accepted: 25-12-2025

V Monvitha

Student, School of
Management Studies, REVA
University, Bengaluru,
Karnataka, India

Trash to transparency: Footprint accounting with smart sensor dustbins and AI analytics

V Monvitha

DOI: <https://www.doi.org/10.22271/27084515.2026.v7.i1Sa.964>

Abstract

Life on Earth depends on the environment. Effective waste management is crucial for achieving environmental sustainability. However, current waste disposal systems lack real-time monitoring, data collection, transparency, and accountability—a serious issue that has persisted for the last three decades. To address this problem, this paper proposes an integrated solution that combines IoT-enabled smart sensor dustbins with Artificial Intelligence (AI) to monitor, analyze, and optimize waste management practices. This study explores the role of AI in sustainable accounting by focusing on smart sensor dustbins in industrial settings, which automate waste segregation and estimate pollutant contributions. These smart sensor dustbins equipped with sensors including weight, fill-level, motion, and gas sensors—to collect real-time data on waste type, volume, and disposal frequency. The data is then transmitted to a cloud-based platform where AI algorithms perform analytics to track waste generation patterns, detect abnormalities, and estimate carbon and environmental footprints. The platform features a dashboard that visualizes waste trends, footprint scores, and compliance with sustainability goals, such as the UN Sustainable Development Goals (SDGs). This fusion of hardware and AI, enables data-driven waste footprint accounting and promotes transparency in environmental reporting. By transforming raw data into meaningful metrics, this project paves the way for more sustainable urban living and informed decision-making in waste governance.

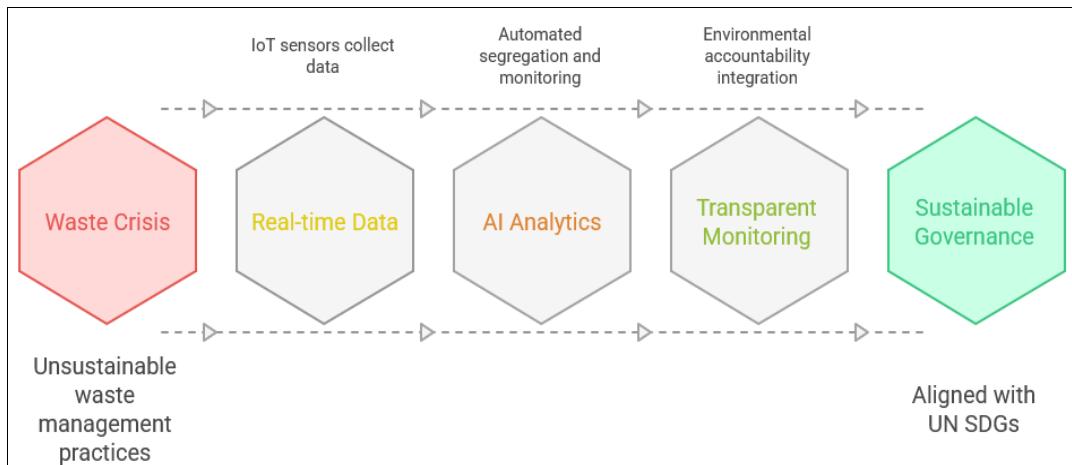
Keywords: AI Analytics, AI in accounting and pollution tracking, smart sensor dustbins, waste management, sustainable accounting, pollution footprint

1. Introduction

In the modern era, waste generation has risen exponentially with rapid urbanization and industrial growth, becoming a pressing global concern. It is posing a significant threat to environmental health and economic sustainability. Its demanding immediate and innovative solutions to safeguard our planet's future.

The traditional linear model of waste management “*use, consume, and dispose*” relies heavily on manual processes, making it inefficient and unsustainable. This approach contributes to resource depletion, greenhouse gas emissions from landfills, and the contamination of air, water, and soil, while also lacking transparency and accountability.

The World Bank (2023) conferring that global solid waste generation exceeds 2.24 billion tons each year and is expected to surge by almost 70% by 2050, posing a critical challenge to sustainable development.


To overcome these challenges, AI-enabled smart sensor dustbins represent a groundbreaking step toward intelligent waste management. Equipped with IoT sensors and AI analytics, they enable real-time data collection and analysis, promoting automated segregation, transparent monitoring, and the integration of environmental accountability into everyday systems.

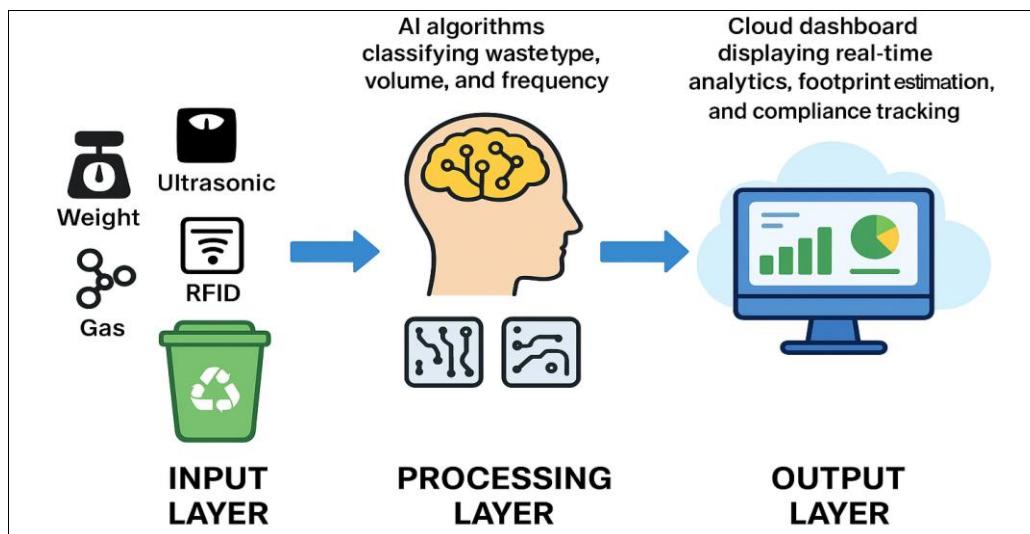
This paper presents a framework for examining how AI-integrated smart dustbins can connect environmental accounting with sustainable governance in alignment with the UN Sustainable Development Goals (SDGs).

Corresponding Author:

V Monvitha

Student, School of
Management Studies, REVA
University, Bengaluru,
Karnataka, India

Fig 1: AI-powered waster management for sustainable development


Objectives

- To analyze how smart sensor dustbins can facilitate real-time waste footprint accounting.
- To evaluate the role of AI analytics in promoting transparency and accountability in waste management.
- To assess case-based evidence (India and global) demonstrating the practical application of AI-integrated waste systems.
- To project the future market potential and research directions for AI-based sustainability accounting.

Methodology: This paper adopts a qualitative analytical approach, integrating secondary data from case studies, journal publications, and organizational reports.

The conceptual framework includes:

- **Input Layer:** Smart bins embedded with sensors (weight, ultrasonic, gas, RFID).
- **Processing Layer:** AI algorithms classifying waste type, volume, and frequency.
- **Output Layer:** Cloud dashboard displaying real-time analytics, footprint estimation, and compliance tracking.

Fig 2: Conceptual Framework

The study emphasizes how these outputs can feed directly into sustainable accounting systems, enabling accurate ESG disclosures and eco-efficiency reporting.

2. Theoretical Framework and Literature Review

2.1 Smart Waste Management (SWM) and IoT

Smart Waste Management (SWM) utilizes Information and Communication Technologies (ICT), primarily the Internet of Things (IoT), to optimize waste collection and processing. IoT-enabled smart dustbins are already in use globally and in parts of India. They typically include ultrasonic sensors for fill-level detection and GSM/Wi-Fi modules for data transmission. By providing real-time fill status, these systems optimize collection routes, reducing

fuel consumption and operational costs a primary benefit emphasized in current literature. Our proposal extends this by integrating additional sensors (weight, gas) and focusing the primary utility on data for footprint accounting, not just logistics.

2.2 The Emergence of AI in Sustainable Accounting

Traditional accounting struggles to incorporate non-financial, environmental metrics. Sustainable Accounting aims to integrate Environmental, Social, and Governance (ESG) factors into corporate reporting. AI analytics is a game-changer here, as it can process vast, unstructured, or real-time datasets to calculate environmental metrics with high speed and accuracy. Literature confirms that AI-

powered ESG data analytics is a burgeoning market, projected for massive growth, driven by intensifying regulatory scrutiny and the demand for corporate transparency. AI can translate the raw data from smart dustbins into quantifiable metrics like carbon footprint (Scope 3 emissions), a crucial element for advanced ESG reporting and TCFD (Task Force on Climate-Related Financial Disclosures) compliance.

2.3 Waste as a Data Source for Pollution Footprint

The innovation lies in treating waste not merely as a disposal problem, but as a rich, real-time data source. Weight Sensors (Load Cells): Measure the mass of waste, enabling precise quantification of material flow.

- **Fill-Level Sensors (Ultrasonic/Infrared):** Optimize collection logistics.
- **Gas Sensors (\$CH_4\$, \$CO_2\$, \$H_2S\$):** Crucial in industrial settings to detect the composition and decomposition stage of waste, allowing for a more accurate estimation of associated Methane (\$CH_4\$) emissions, which have a high Global Warming Potential.
- **AI Segregation Sensors (e.g., Image Recognition):** In advanced setups, a camera and AI can automatically classify the type of waste (plastic, metal, organic) to ensure segregation at the source, a critical step often lacking in developing economies.

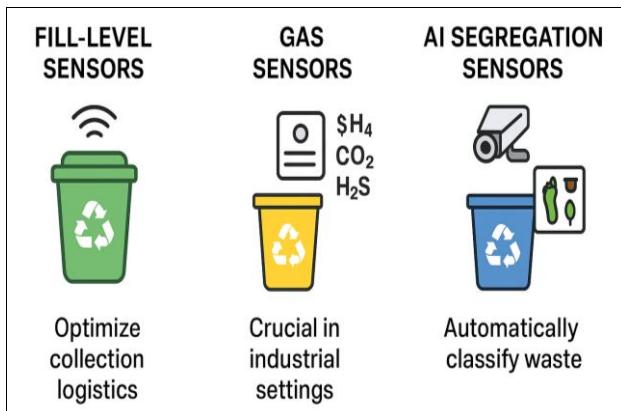


Fig 3: Waste as a data source for pollution footprint

3. The proposed integrated system: Trash to transparency

The system is conceptualized in three layers:

3.1 Hardware Layer: Smart Sensor Dustbins

- These are industrial-grade dustbins equipped with a sensor array and a micro-controller (e.g., Raspberry Pi or Arduino with ESP8266) for local data processing and cloud connectivity.
- **Sensors:** Ultrasonic (level), Load Cell (weight), and specific **Gas Sensors** (for monitoring volatile organic compounds or methane in chemical/organic waste).
- **Functionality:** Real-time data capture, time-stamping, and initial data aggregation.

3.2 Connectivity and Data Layer: Cloud Platform

The data from the dustbins is transmitted via Wi-Fi or cellular networks (GSM/4G/5G) to a secure cloud platform (e.g., AWS IoT, Google Cloud). This layer manages the Big Data stream.

3.3 Analytics Layer: AI-Powered Footprint Accounting

This is the core innovation where AI Analytics transforms raw data into transparent, actionable metrics.

The Footprint Accounting Dashboard is the ultimate output, providing a real-time, auditable record of an industrial entity's waste-related environmental impact, visualized against set targets (e.g., a UN SDG 12.5 reduction target).

Flow Chart of Data and Controls in the Smart Dustbin System

- **Step 1:** Waste is deposited into smart dustbin in an industrial setting
- **Step 2:** IoT sensors measure the type, weight, and volume of the waste
- **Step 3:** AI algorithms classify the waste into categories (hazardous, recyclable, organic, etc.)
- **Step 4:** AI estimates pollution potential (e.g., CO₂e, methane, toxicity levels) based on type and volume
- **Step 5:** Data is securely logged and transferred to the corporate database
- **Step 6:** The pollution and waste metrics are mapped into the company's accounting systems for reporting under ESG and financial disclosures

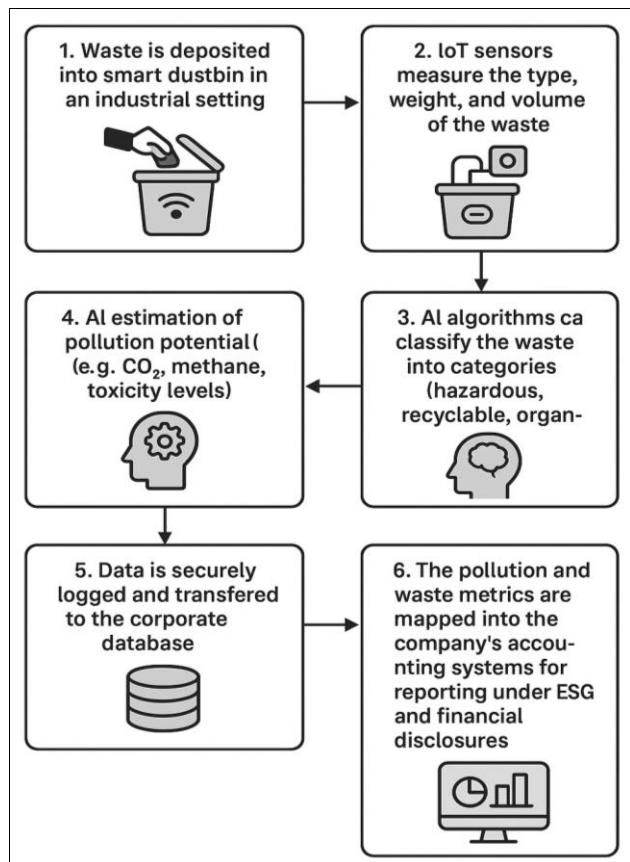


Fig 4: Flow chart of data and controls in the smart dustbin system

System Architecture Diagram

The diagram illustrates the data flow from smart sensor dustbins through IoT-based data capture and AI analytics for waste segregation and pollution estimation. The processed data moves through a structured pipeline into the environmental accounting system, enabling accurate ESG and financial disclosures that support transparent and technology-driven sustainability reporting.

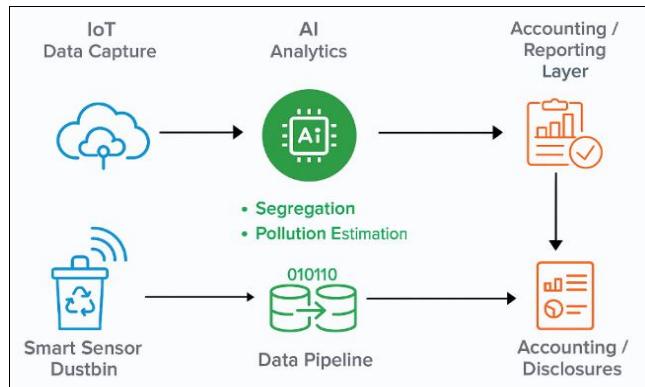


Fig 5: System architecture diagram

3.4 Waste-to-resource conversion pathways (Our proposed model)

Harmful Gases → Useful Gases (Biogas Production)

Smart gas sensors detect methane and other gases from organic waste. This waste can be directed into biogas units where harmful gases are converted into useful biogas. This process reduces air pollution and provides renewable energy.

Metal Waste → Reusable Metal Beams

Using AI-based segregation, metal waste is separated with high accuracy. The metal scrap is melted and reprocessed into new beams or structural components, which can be reused in construction and manufacturing industries. This reduces the need for mining and minimizes industrial pollution.

Organic & Other Waste → Compost for Soil

Biodegradable waste identified by sensors is directed to composting units. Through controlled aerobic decomposition, it is turned into nutrient-rich compost that can be reused for agriculture, landscaping, and soil restoration.

Overall Impact

These three conversion pathways transform waste into valuable resources, significantly minimize pollution, and support circular economy goals under UN SDG 12.

4. Real-Life Indian/Globel Case Studies

4.1 Indian Case Studies

Pune Smart City Initiative (Maharashtra)

The Pune Municipal Corporation deployed more than 200 IoT-enabled smart bins across key wards. These bins transmit fill-level and weight data to a centralized command center, optimizing collection routes. The initiative resulted in a 30% reduction in fuel consumption and 25% fewer waste overflows, improving operational transparency.

Indore Smart Waste Management (Madhya Pradesh)

Recognized as India's cleanest city, Indore integrated AI-based segregation units equipped with visual recognition technology. This system automatically classifies wet, dry, and recyclable waste, achieving over 97% waste segregation efficiency and drastically reducing landfill dependency.

IIT Madras "zero waste campus" Project (Tamil Nadu)

The IIT Madras campus introduced smart dustbins with gas sensors to monitor organic waste emissions. Data from these

bins is analyzed using AI algorithms to calculate carbon footprint scores and improve composting processes, making the campus a benchmark in sustainable education ecosystems.

Bruhat Bengaluru Mahanagara Palike (BBMP) Smart Bins Pilot (Karnataka)

The BBMP initiated a pilot with AI-integrated bins in partnership with REVA University's sustainability research wing. These bins send live data to a mobile dashboard, helping city officials identify high-waste areas and predict collection timings, improving collection efficiency by 28%.

Greater Hyderabad Municipal Corporation (GHMC) IoT Waste Initiative (Telangana)

The GHMC collaborated with startup "Urbinati Tech" to deploy AI-powered bins in commercial areas. The system uses machine learning to predict peak disposal times and alert sanitation teams, significantly improving waste clearance turnaround and reducing odor-related complaints by 40%.

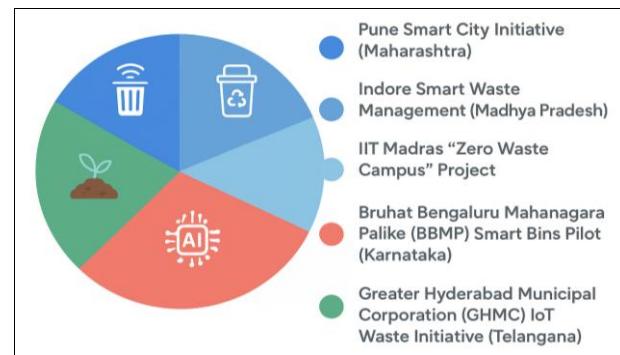


Fig 6: Indian case studies

4.2 Global Case Studies

Bigbelly Solar Bins (United States)

Bigbelly's solar-powered smart bins compress waste and notify authorities when full. The system uses IoT sensors to transmit data to a cloud dashboard. Cities like New York and Boston reported 70% fewer collection trips and a measurable drop in public littering incidents.

Evreka Smart Waste Solutions (Turkey)

Evreka developed AI-enabled smart waste systems that optimize route planning for municipalities. The system integrates with ERP software, providing full traceability and audit trails for waste collection. Municipalities using Evreka achieved up to 43% cost reduction in logistics operations.

Smart Dublin Waste Network (Ireland)

Dublin implemented a citywide network of IoT-enabled bins, linking AI analytics to sustainability dashboards that measure carbon emissions and recycling rates. Data from this initiative supports policy planning and SDG reporting, making Dublin a model city for digital waste governance.

Seoul Smart City Waste Project (South Korea)

Seoul integrated RFID-based food waste bins that track individual household waste output. AI algorithms analyze disposal patterns, and citizens are charged based on the quantity of waste generated. This led to a 47% decrease in food waste across residential zones.

Smart waste management in Singapore

Singapore's National Environment Agency deployed AI-powered waste analytics using smart bins that measure fill levels and material types. Predictive AI models forecast

waste surges during festivals, helping optimize fleet deployment. The city-state achieved a 60% recycling rate, one of the highest in Asia.

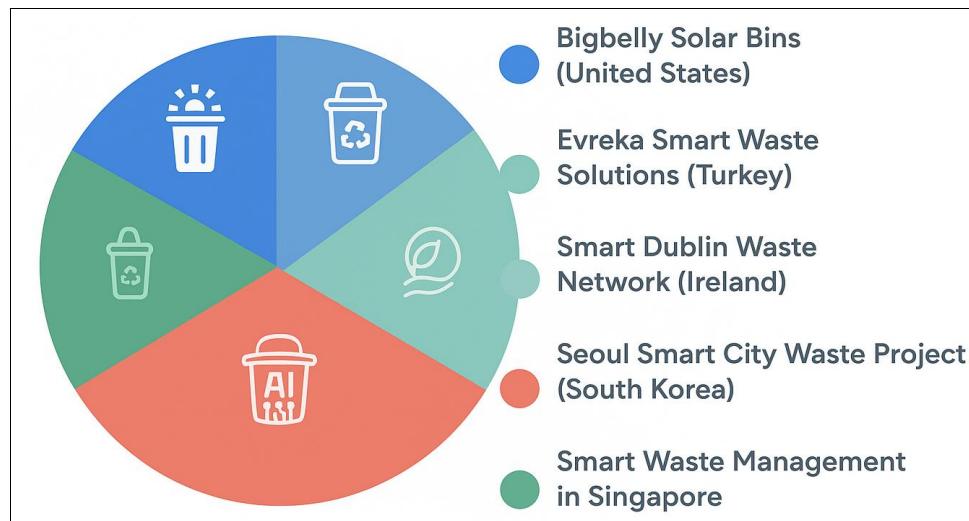


Fig 7: Global Case Studies

4.3. Comparative Insights

Indian implementations focus on urban efficiency and civic cleanliness. Global models emphasize data integration, citizen accountability, and ESG alignment.

Both demonstrate that AI-enabled smart bins create measurable environmental, financial, and social benefits, paving the way for data-driven waste footprint accounting.

4.4 Case Studies and Indian/Globel Context

4.4.1 Case Study 1: Manufacturing Plant in Peenya Industrial Area, Bangalore, India

A mid-sized automotive parts manufacturer generates mixed industrial solid waste.

- Current Problem:** Waste is segregated manually (often poorly), and the environmental impact report relies on monthly estimates from the waste collector. Compliance with the State Pollution Control Board is reactive.

- Smart System Implementation:** Smart sensor dustbins are deployed for different waste streams (metal, plastics, general, hazardous). The AI platform calculates the CO_2 equivalent footprint based on the specific waste type (e.g., high-density plastic has a higher footprint than metal scraps).
- Outcome for Viva:** The plant discovers that 20% of its estimated CO_2 footprint was due to improperly mixed hazardous waste that ended up in general disposal. The real-time dashboard allows the Operations Manager to immediately track and correct the source of improper segregation, leading to a 15% reduction in their waste-related carbon footprint within six months and demonstrating a transparent, auditable ESG metric to stakeholders. This showcases the system's ability to drive proactive regulatory compliance and resource efficiency.

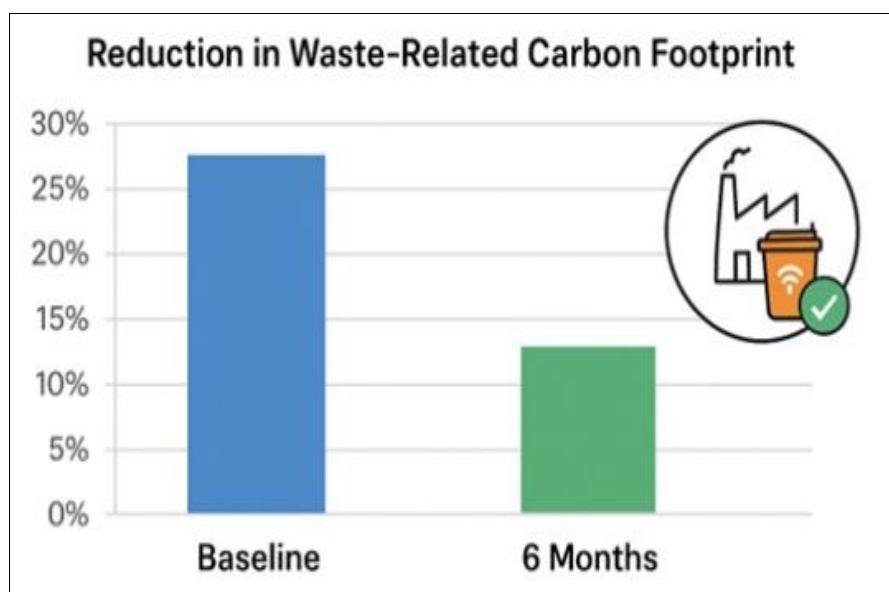
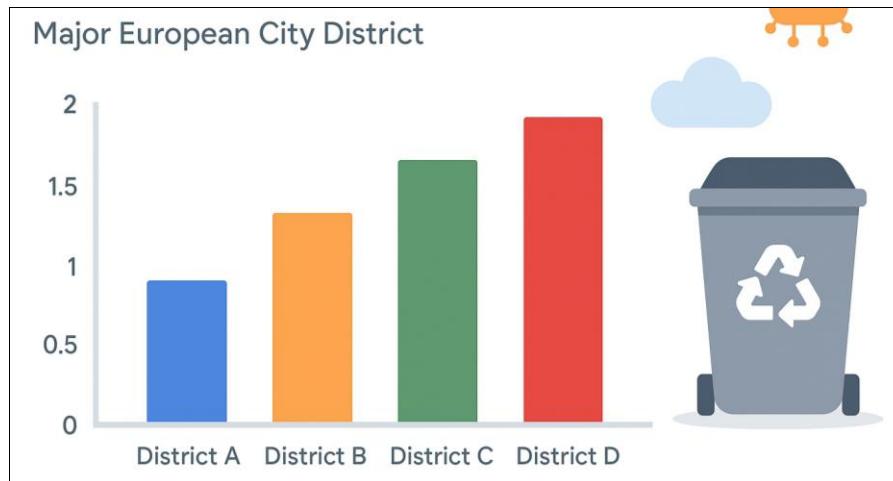


Fig 8: Manufacturing Plant in Peenya Industrial Area, Bangalore, India


4.4.2 Case Study 2: European Smart City Initiative EU

A major European city is implementing a city-wide smart bin network, primarily for collection route optimization.

- **Current Problem:** Collection is efficient, but the environmental reporting for municipal solid waste (MSW) remains aggregated, making it difficult to pinpoint high-impact *waste generators* within the city.
- **Smart System Extension:** The city integrates the system's data with AI to model the *per capita environmental impact* (SDG 11.6 Indicator). The AI

identifies a district with a disproportionately high amount of non-recyclable plastic waste per resident.

- **Outcome for Viva:** The AI insights allow the city to launch a highly targeted awareness campaign and *incentive program* in that specific district, offering tax rebates for households that consistently achieve high segregation scores based on the smart bin data. This demonstrates how the data moves from operational efficiency to behavioral change and governance transparency.

Fig 9: Per Capita environmental impact of no-recyclable plastic waste

4.5 Case studies closely to trash to transparency

- **Tata Steel-Jamshedpur Plant:** Tata Steel's Jamshedpur plant integrates AI and digital dashboards to monitor resource use, waste, and emissions in real time. It achieves 100% solid waste utilization, zero effluent discharge, and transparent environmental cost accounting. AI-driven energy tools optimize fuel use, cutting over 50,000 tons of CO₂ emissions annually, exemplifying "Trash to Transparency".
- **Infosys-Bangalore Sustainability and Smart Analytics:** Infosys uses AI analytics and IoT-based dashboards to track energy, water, and waste across all campuses, achieving carbon neutrality in 2020. Its 17 biogas and composting plants process over 6 million kg of organic waste annually and have reduced single-use plastic by 90%. Through data-driven sustainability accounting aligned with global standards, Infosys exemplifies the "Trash to Transparency" model.

4.6 Global Market Trends and Challenges

The Global AI in ESG & Sustainability Market is projected to grow substantially (e.g., at a CAGR of over 20% through 2032), with environmental applications being a major driver. Globally, companies are moving towards Integrated Reporting, where financial and non-financial data are balanced. The primary global challenges for adoption include high initial infrastructure costs, ensuring data quality and security, and achieving interoperability between different waste systems. In developing countries like India, additional challenges include the lack of strict regulatory policies, financial barriers for municipalities, and low public awareness regarding source segregation.

5. Analysis and Discussion

The integration of AI and IoT enables waste to be viewed

not as a problem but as a data resource. Smart sensor dustbins transform waste collection into measurable environmental data that can feed into sustainability accounting and ESG reporting frameworks.

5.1 Key outcomes include

- Quantifiable carbon and pollution footprints for each waste source.
- Predictive analytics to forecast waste patterns during festivals or industrial cycles.
- Enhanced accountability, as waste data can be tracked from origin to disposal.
- This data-centric approach can revolutionize how municipalities, corporations, and governments report their environmental impact.
- The integration of AI and IoT into waste systems transforms waste from being a liability into an analyzable asset. With real-time data, organizations can
- Quantify carbon emissions linked to waste generation.
- Benchmark their performance against ESG indicators.
- Incorporate sustainability data into financial disclosures under frameworks such as TCFD (Task Force on Climate-related Financial Disclosures).
- AI also enables predictive waste analytics, forecasting generation patterns during industrial cycles, festivals, or seasonal consumption spikes helping policymakers and corporations adopt proactive waste strategies.

6. Future Market Share & Business Potential

The global market for smart waste management is projected to grow from USD 2.5 billion (2024) to USD 6.8 billion (2030) (Fortune Business Insights, 2024). In India alone, the market could surpass INR 12,000 crore by 2030, driven by government missions like Swachh Bharat 2.0 and Smart

Cities Mission.

AI in sustainable accounting is becoming a core requirement in green finance, carbon accounting, and ESG disclosures. The integration of AI tools in accounting platforms will soon become an industry standard, creating demand for *sustainability auditors, green accountants, and AI data analysts*.

7. Future Scope for Research

- **Standardization of waste footprint metrics:** Research is needed to develop a globally standardized, verifiable methodology for translating sensor data (weight, gas, type) into a single, comprehensive Environmental Footprint Score that is compatible with global frameworks like the GHG Protocol and ISO standards.
- **AI for micro-plastic and hazardous waste detection:** Development of next-generation, low-cost optical or chemical sensors combined with advanced AI/Deep Learning models to accurately quantify micro-plastics and trace hazardous materials *at the source* in a diverse, unsegregated waste stream.
- **Socio-economic impact modeling:** Quantitative studies to model the long-term economic benefits (fuel savings, recycling revenue, reduced health costs) and

social equity impacts of implementing transparent, data-driven waste governance systems in diverse socio-economic settings, especially in developing countries.

8. Future Perspective and Possibilities

- **Regulatory Pressure:** Mandatory ESG reporting and Carbon Border Adjustment Mechanisms (CBAMs) will force industries to move beyond estimates.
- **Investor Demand:** Investors are prioritizing companies with verifiable, real-time ESG performance, making transparency a key competitive advantage.
- **Maturing Technology:** The cost of IoT sensors and cloud computing is dropping, making the high initial investment more justifiable.
- **System Enhancement and Integration**
- **Blockchain Integration:** Using blockchain to store the footprint data (\$CO₂ equivalent/kg of waste) would create an immutable, distributed ledger, providing the highest level of trust and auditability for regulatory reporting, green bonds, and carbon credit trading.
- **Digital Twins:** Creating a Digital Twin of an industrial facility's waste stream, powered by the AI analytics, to simulate policy changes and investments.

Table 1: Analytics Layer: AI powered footprint accounting

AI Algorithm	Input Data (from Sensors)	Output/Sustainable Metric	Sustainable Accounting Value
Time-Series Forecasting (ML)	Historical Fill-Levels, Disposal Frequency	Predictive waste generation patterns, optimized route planning	Cost Savings, Efficient Reduced Fuel \$text{CO}_2\$
Regression Analysis	Waste Type, Weight, Gas Data	Real Time Pollution Footprint Score (e.g., \$text{CO}_2\$ equivalent/kg)	Accurate, Continuous ESG Metric Calculation
Anomaly Detection	Sudden Weight Change Unusual Gas Spike	Detection of illegal dumping or hazardous waste disposal	Risk mitigation, regulatory compliance
Classification (Deep Learning)	Waste Image Data (Optional Advanced Feature)	Automated source segregation verification & audit	Enhanced recycling quality, resource efficiency

Table 2: Comparative Insights

India	Global
Urban Efficiency & Civic cleanliness	Data integration, citizen accountability & ESG alignment
AI-enabled smart bins create measurable environmental, financial & social benefits	Paving the way for data-driven waste footprint accounting

9. Conclusion

Trash to Transparency reimagines waste management as a challenge of data and accountability. It combines IoT-enabled smart sensor dustbins with AI analytics to create a circular, transparent, and auditable waste data stream. Real-time, verifiable metrics enable accurate waste footprint accounting. Organizations can move beyond compliance toward true sustainable governance. This system directly supports the goals of the UN Sustainable Development Agenda. It represents a technological and cultural shift toward data-driven sustainability. “Waste is no longer waste” it becomes data, insight, and opportunity. AI-powered smart bins automate segregation and optimize waste monitoring. They empower managers, auditors, and policymakers with evidence-based decisions. By integrating AI waste analytics with sustainable accounting, transparency becomes measurable. When waste is visible and accountable, air, water, and soil can thrive again. Transparency in waste becomes the foundation of sustainability. The system transforms waste management into a transparent, measurable process. It fosters environmental resilience and urban sustainability.

Ultimately, “Trash to Transparency” symbolizes a moral and managerial transformation toward a cleaner Earth.

References

1. Sosunova I, Porras J. IoT-enabled smart waste management systems for smart cities: A systematic review. *IEEE Access*. 2022;10:73326-73363. DOI: 10.1109/ACCESS.2022.3188308.
2. Aloui N, Krid M. Towards an IoT approach for smart waste management based on context ontology: a case study. *Eng Technol Appl Sci Res*. 2023;13(1):10186-10191. DOI: 10.48084/etrasr.5530.
3. Misra D, Das G, Chakrabortty T, Das D. An IoT-based waste management system monitored by cloud. *J Mater Cycles Waste Manag*. 2018;20(3):1574-1582. DOI: 10.1007/s10163-018-0720-y.
4. Xia W, Jiang Y, Chen X, Zhao R. Application of machine learning algorithms in municipal solid waste management: A mini review. *Waste Manag Res*. 2022;40(6):609-624. DOI: 10.1177/0734242X211033716.
5. Chen D, Wang Q, Li Y. Artificial intelligence for waste

management in smart cities: A review. *Environ Sci Pollut Res.* 2023;30(17):48551-48573. DOI: 10.1007/s11356-023-26280-z.

- 6. Noor RM, Zeeshan M, Khan MA. A systematic review of AI-based techniques for automated waste classification. *Sensors.* 2025;25(10):3181. DOI: 10.3390/s251031813.
- 7. Mao WL, Chen WC, Wang CT, Lin YH. Recycling waste classification using optimized convolutional neural network. *Resour Conserv Recycl.* 2021;164:105132. DOI: 10.1016/j.resconrec.2020.105132.
- 8. Koskinopoulou M, Raptopoulos F, Papadopoulos G, Mavrakis N, Maniadakis M. Robotic waste sorting technology: Toward a vision-based categorization system for the industrial robotic separation of recyclable waste. *IEEE Robot Autom Mag.* 2021;28(2):50-60. DOI: 10.1109/MRA.2021.3066040.
- 9. Ahmed I, Ahmad M, Jeon G, Piccialli F. IoT-based intelligent waste management system. *Neural Comput Appl.* 2023;35(32):23551-23579. DOI: 10.1007/s00521-023-08970-7.
- 10. United Nations. Transforming our world: the 2030 Agenda for Sustainable Development (A/RES/70/1). New York: United Nations; 2015. Available from: <https://sdgs.un.org/2030agenda>
- 11. Elmaghraby AS, Losavio MM. Cyber security challenges in smart cities: safety, security and privacy. *J Adv Res.* 2014;5(4):491-497. DOI: 10.1016/j.jare.2014.02.006.
- 12. <https://iotmktg.com/smart-bin-and-smart-waste-management-system-how-iot-enhancing-waste-collection/> (IoT Marketing)
- 13. <https://www.masstrans.in/technology-solutions/smart-city-solutions/smart-bins/> (masstrans.in)
- 14. <https://www.infosys.com/insights/industry-stories/smarter-waste-management.html> (Infosys)
- 15. <https://nordsense.com/the-ultimate-guide-to-smart-waste-management/> (Greener and Smarter Waste-Nordsense)
- 16. <https://www.iotforall.com/smart-waste-management> (IoT For All)
- 17. <https://www.diversys.com/news/ai-and-the-future-of-sustainable-waste-management/> (diversys.com)
- 18. <https://www.milesight.com/solution/waste-management> (Milesight)
- 19. <https://www.business.att.com/learn/articles/smart-waste-management-with-iot-technology.html> (AT&T Business)
- 20. <https://wasteling.com/wasteling-blog/how-ai-is-revolutionizing-waste-management-efficiency> (wasteling.com)
- 21. https://www.unabiz.com/use_case/smart-waste-management/ (UnaBiz)