

E-ISSN: 2708-4523
P-ISSN: 2708-4515
Impact Factor (RJIF): 5.61
AJMC 2026; SP-7(1): 55-60
© 2026 AJMC
www.allcommercejournal.com
Received: 18-12-2025
Accepted: 05-01-2026

Dr. Fazeelath Tabassum
Assistant Professor, School of Management Studies, REVA University, Karnataka, India

Dr. Nitu Ghosh
Professor & Director, School of Management Studies, REVA University, Karnataka, India

Serene Shaji
Student, School of Management Studies, REVA University, Karnataka, India

Artificial intelligence and the future of tourism: Transforming travel experiences in the digital age

Fazeelath Tabassum, Nitu Ghosh and Serene Shaji

DOI: <https://www.doi.org/10.22271/27084515.2026.v7.i1Sa.970>

Abstract

The rapid advancement of Artificial Intelligence (AI) has transformed the tourism industry significantly, offering innovative solutions to enhance travel experiences for consumers and streamline operations for service providers. This paper explores the multifaceted impact of artificial intelligence on the future of tourism, focusing on its integration into various aspects such as personalized travel recommendations, customer service automation, and intelligent transportation systems. This study aims to provide insights into how Artificial Intelligence can enhance the overall travel experience and drive sustainable practices in the tourism sector, paving the way for a more efficient, responsive, and customer-centric industry. Furthermore, the paper discusses AI implementation's challenges and ethical considerations, such as data privacy and the potential for bias in automated systems. The results highlight the multifaceted impact of AI on the future of tourism, focusing on its applications in personalizing customer experiences, optimizing travel logistics, and enhancing operational efficiency. By analyzing various AI-driven tools, this study highlights how these innovations reshape how travelers interact with service providers, ultimately leading to more tailored and satisfying travel experiences.

Keywords: Artificial intelligence, digital transformation tourism, operational efficiency, sustainability, travel experiences

Introduction

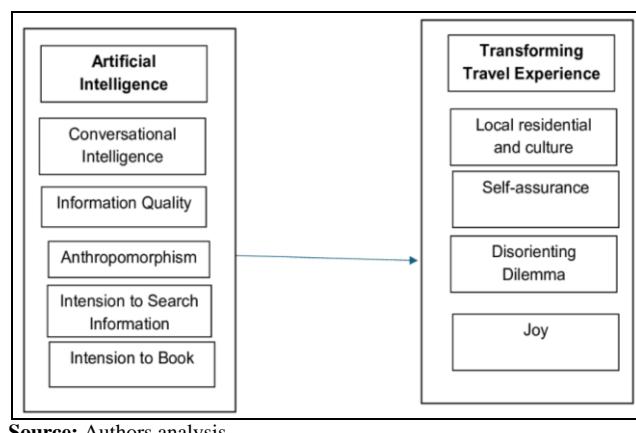
In an era where digitalization is redefining customer expectations, the role of AI in tourism has evolved from a novelty to a necessity for businesses looking to enhance competitiveness and meet the demands of tech-savvy global travelers. From AI-powered recommendation systems and virtual assistants to intelligent travel management platforms, AI can provide travelers with personalized itineraries, real-time updates, and efficient solutions to navigate the complexities of modern travel. Despite this potential, the application of AI in Bangalore's tourism sector remains relatively unexplored. This study aims to investigate the impact of AI on the future of tourism, with a particular focus on how it is transforming the experiences. By exploring the intersections of AI and tourism, this research will analyze the effectiveness of AI-driven tools, the challenges of implementation, and the perceptions of travelers who engage with AI technologies. The study will also assess the broader implications of AI integration for the tourism industry, from customer satisfaction to operational efficiency, ultimately contributing to a deeper understanding of AI's role in shaping the future of tourism. With the emergence of people who like traveling, people are tech-savvy in using electronic gadgets in their daily walks of life. There is a lack of innovative solutions to enhance consumer travel experiences and streamline operations for service providers. In tourism, AI applications primarily focus on personalized travel services, virtual assistance, and data-driven insights to enhance user experiences (Gretzel *et al.*, 2021) ^[12]. Recent studies show that AI technologies, such as chatbots and recommendation engines, are becoming essential tools in shaping tourist experiences as they respond to user needs in real-time, adaptively recommending destinations, activities, and services (Li *et al.*, 2020) ^[19]. This capacity for personalization, enabled by machine learning algorithms that analyze traveler preferences and behavior, has significantly increased customer satisfaction and engagement (Buhalis & Sinarta, 2019) ^[3]. Conversational intelligence is a significant development in AI within tourism, which enhances interactions between tourists and virtual assistants (e.g., chatbots). Tourists increasingly rely on these AI-powered tools for

Corresponding Author:
Dr. Fazeelath Tabassum
Assistant Professor, School of Management Studies, REVA University, Karnataka, India

assistance during their travels, from itinerary planning to on-the-ground support (Xiang *et al.*, 2021) ^[22]. Chatbots incorporating advanced natural language processing (NLP) create human-like interactions, making travelers feel understood and engaged and building trust in digital services (Jiang & Wen, 2022) ^[16]. Similarly, anthropomorphism, or human-like attributes in AI, has positively impacted users' perceptions and engagement, enhancing their willingness to rely on AI for travel decisions (Kim & Baker, 2019) ^[17].

Another critical area is AI's role in enhancing information quality, an aspect vital for informed travel decisions. Information quality includes relevance, accuracy, and cultural appropriateness, all of which contribute to travellers' joy and satisfaction (Wang *et al.*, 2022) ^[21].

Theoretical framework


Artificial Intelligence (AI) redefines the tourism industry, introducing dynamic transformations in travel experiences and operations. This review examines recent literature on AI applications in tourism, exploring key areas where AI has impacted customer experience, operational efficiency, and service personalization. The insights suggest that AI creates more efficient, tailored, and engaging travel experiences that resonate with modern travelers' expectations. One of AI's primary applications in tourism is personalizing travel experiences. Technologies such as recommendation engines and predictive analytics allow personalized itinerary planning, accommodation suggestions, and activity recommendations (Tussyadiah, 2020) ^[15]. AI-driven personalization helps businesses analyze user preferences and behavior, resulting in tailored experiences that increase customer satisfaction (Amaro & Duarte, 2022) ^[1]. For instance, companies like TripAdvisor and Expedia have employed AI to personalize their search and recommendation systems, offering travelers tailored options based on browsing history, preferences, and previous trips (Gretzel, 2018) ^[6]. This level of personalization builds customer loyalty and enhances the user experience, marking a significant shift from traditional one-size-fits-all approaches. AI-powered chatbots and virtual assistants are becoming increasingly prevalent in customer service within the tourism industry. These tools allow for 24/7 customer support, quickly answering inquiries and assisting with bookings. Studies suggest that chatbots enhance customer satisfaction by providing instant responses, which are critical in a fast-paced environment like travel (Kuo *et al.*, 2017) ^[18]. Airlines and hotels use chatbots to streamline customer interactions, enhancing customer experience by

making it more responsive and accessible (Xiang *et al.*, 2021) ^[22]. AI is also proving instrumental in improving operational efficiency within tourism businesses. Machine learning algorithms are used to optimize pricing, forecast demand, and manage inventory. Dynamic pricing algorithms, in particular, allow airlines, hotels, and car rentals to adjust prices based on demand patterns, maximizing revenue and resource utilization (Baker *et al.*, 2021) ^[2]. Moreover, AI-driven analytics aid in workforce planning by forecasting peak periods, enabling businesses to allocate resources more effectively (Buhalis, 2020) ^[20]. Research suggests that by implementing AI in operational tasks, tourism companies can reduce costs and improve service consistency, positively impacting customer experiences. The future of AI in tourism appears promising, with potential advancements in AI-driven innovation and service delivery. The growing trend of contactless technology, especially post-pandemic, suggests that AI will play a central role in the evolution of touchless travel services.

Furthermore, natural language processing and AI ethics advancements are expected to contribute to more effective, ethical, and user-friendly AI applications in tourism. AI is reshaping the tourism industry, transforming travel experiences through enhanced personalization, customer service, operational efficiency, and immersive experiences. While there are challenges related to privacy, ethical considerations, and cost, the benefits of AI adoption are substantial. As AI technology advances, its integration into tourism will likely continue to grow, creating new possibilities for innovative, customer-centered travel experiences. High-quality Information has been shown to reduce decision fatigue and increase the likelihood of booking, suggesting that tourists trust AI-driven platforms that deliver precise, relevant recommendations (Mariani *et al.*, 2020) ^[20].

Moreover, AI's impact extends to creating culturally immersive experiences by helping tourists connect with local cultures and communities through personalized recommendations (Gretzel *et al.*, 2021) ^[12]. In this way, AI fosters cultural understanding and enhances the tourist experience by allowing users to explore cultural activities tailored to their interests. For instance, AI systems that suggest local events, culinary experiences, and culturally significant sites are gaining popularity, enriching the tourist experience and supporting local economies (Li *et al.*, 2020) ^[19].

Conceptual mode

Fig 1: Conceptual model of artificial intelligence and transforming travel experience

Research Methodology

The research analyses the current use of AI in enhancing tourism experiences and analyzes traveller expectations and perceptions of AI-enhanced tourism. The study aims to propose a framework for integrating AI to enhance travel experiences. The paper developed a linear model to study the artificial intelligence relationship and its dependence on the transformation travel experience. Different researchers developed scales, and we adapted a scale from previously valid and reliable dimensions, factors, indicators, and elements identified in the existing literature. The study's nature was quantitative, and accurate and reliable items were always demanded. Reliability and validity are the essential measurements of the questionnaire, and this paper collected 320 responses for the study from the tourist. Ling, *et al.*, (2023) [11], Perceived intelligence of Artificially Intelligent Assistants for Travel scale development and validation. The five indicators were chosen for the artificial intelligence. Four variables were considered to study the transformation travel experience Soulard *et al.*, (2020) [14]. Developing and testing the Transformative Travel Experience Scale (TTES). Furthermore, Statistical Package for Social Sciences (version 21), AMOS, and SEM were used to measure the study's initial model and model fit.

Data Analysis

Table 1: Reliability Statistics

Artificial Intelligence	No of Items	Cronbach's Alpha	
Conversational Intelligence	5	.883	.962
Information quality	5	.919	
Anthropomorphism	3	.716	
Intention to search Information	4	.857	
Intension to book	4	.886	
Transforming travel experience			
Local residents and culture	5	.687	.876
Self-assurance	4	.889	
Disorienting dilemma	4	.692	
Joy	4	.886	

Source: Authors analysis

Table 1 presents the reliability analysis (Cronbach's Alpha values) for the constructs under Artificial Intelligence and Transforming Travel Experience. Cronbach's Alpha measures the internal consistency of items within each variable, with higher values indicating more reliable scales. Overall, Cronbach's Alpha of the Artificial Intelligence Construct is .962, indicating high reliability for this construct. The conversational Intelligence Cronbach's Alpha=.883 (5 items), this is a high level of reliability, suggesting that the items within Conversational Intelligence are consistent. Information Quality Cronbach's Alpha=.919 (5 items) With an Alpha above .9, Information Quality has excellent reliability. Anthropomorphism Cronbach's Alpha=.716 (3 items), This is acceptable reliability, though it's lower compared to other variables within AI, possibly due to the fewer items or slight variation in responses. Intention to Search Information Cronbach's Alpha=.857 (4 items). This is high reliability, indicating consistent

responses. Intention to Book Cronbach's Alpha=.886 (4 items), this score also shows high reliability. Transforming Travel Experience Construct, overall Cronbach's Alpha .876, showing high reliability for this construct. Local Residents and Culture Cronbach's Alpha=.687 (5 items). This is a moderate level of reliability, slightly lower than desired, potentially due to variability in responses or item content. Self-Assurance Cronbach's Alpha=.889 (4 items); this is high reliability, suggesting consistency in responses. Disorienting Dilemma Cronbach's Alpha=.692 (4 items). This is an acceptable level of reliability, but it's on the lower end, possibly due to variability in responses. Joy Cronbach's Alpha=.886 (4 items). This indicates high reliability for the items measuring Joy. Both constructs show high internal consistency overall, with artificial intelligence showing particularly strong reliability. Anthropomorphism and Local Residents and Culture have relatively lower reliability scores, though still within acceptable limits. The Cronbach's Alpha values suggest that the items within each variable are generally reliable for measuring the intended constructs.

Table 2: Descriptive statistics

Constructs	Variables	Descriptive Statistics		
		N	Mean	Std. Deviation
Artificial Intelligence	Conversational Intelligence	320	3.8944	.71190
	Information quality	320	3.8144	.81378
	Anthropomorphism	320	3.4635	.93654
	Intention to search Information	320	3.9375	.72920
	Intension to book	320	3.9148	.74039
Transforming Travel Experience	Local residents and culture	320	3.0644	.71507
	Self-assurance	320	2.6383	.97511
	Disorienting dilemma	320	2.5742	.83384
	Joy	320	3.9406	.72000
	Valid N (list wise)	320		

Source: Authors analysis

This descriptive statistics table provides the mean and standard deviation for the variables within the two constructs, Artificial Intelligence and Transforming Travel Experience. The variables under Artificial Intelligence, Conver_Intelli Mean=3.8944, SD=0.71190, Inform_Qlty Mean=3.8144, SD=0.81378, Anthro Mean=3.4635, SD=0.93654, Inten_sear_Infor Mean=3.9375, SD=0.72920, Inten_book Mean=3.9148, SD=0.74039 These variables have moderately high means, with Inten_sear_Infor showing the highest mean (3.9375) and Anthro the lowest (3.4635). The standard deviations indicate some variability, with Anthro showing the most significant response spread. Transforming Travel Experience Construct Local_reside Mean=3.0644, SD=0.71507, Self_Assur Mean=2.6383, SD=0.97511, Disorie_dilem Mean=2.5742, SD=0.83384, Joy Mean=3.9406, SD=0.72000 for this construct, Joy has the highest mean (3.9406), indicating a generally positive response, while Disorie_dilem has the lowest (2.5742). Self_Assur has the highest standard deviation (0.97511), suggesting greater response variability.

Table 3: Artificial Intelligence and Transformation travel experience

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Model Summary ^b					Durbin-Watson
					R Square Change	F Change	DF1	DF2	Sig. F Change	
1	.417 ^a	.174	.161	.55796	.174	13.226	5	314	.000	1.241

a. Predictors: (Constant), Inten_book, Anthro, Conver_Intelli, Inten_sear_Infor, Inform_Qlty

b. Dependent Variable: Transf_trav_exp

Source: Authors analysis**Table 4:** ANOVA results for regression model

ANOVA ^a					
Model	Sum of Squares		DF	Mean Square	
	Regression	20.588		4.118	13.226
1	Residual	97.753	314	.311	
	Total	118.341	319		

a. Dependent Variable: Transf_trav_exp

b. Predictors: (Constant), Inten_book, Anthro, Conver_Intelli, Inten_sear_Infor, Inform_Qlty

Source: Authors analysis**Table 5:** Regression coefficients for predictors of transforming travel experience

Model	Coefficients ^a						95.0% Confidence Interval for B
	Unstandardized Coefficients		Standardized Coefficients		T	Sig.	
1	B	Std. Error	Beta			Lower Bound	
	(Constant)	1.785	.195		9.169	.000	1.402
	Conver_Intelli	.356	.107	.417	3.330	.001	.146
	Inform_Qlty	-.346	.102	-.463	-3.389	.001	-.548
	Anthro	.196	.055	.302	3.571	.000	.088
	Inten_sear_Infor	.086	.088	.103	.984	.326	-.086
	Inten_book	.047	.092	.057	.511	.609	-.134

a. Dependent Variable: Transf_trav_exp

Source: Authors analysis

The model summary provides the results of a regression analysis with Transf_trav_exp (Transforming Travel Experience) as the dependent variable and five predictors Inten_book, Anthro, Conver_Intelli, Inten_sear_Infor, and Inform_Qlty. R (Correlation Coefficient) R=0.417R=0.417R=0.417. This suggests a moderate positive correlation between the predictors and Transf_trav_exp. R Square (Coefficient of Determination) R2=0.174R^2=0.174R2=0.174. This value indicates that the model explains 17.4% of the variance in Transf_trav_exp, showing that the predictors have some explanatory power but leave a large portion of the variance unexplained. Adjusted R Square 0.161. This is slightly lower than R2R^2R2, indicating that the model may lose a small amount of explanatory power when accounting for the number of predictors relative to the sample size. This adjusted value still suggests the model's explanatory power is limited. Standard Error of the Estimate 0.55796. This value represents the average distance of observed values from the regression line. A lower standard error indicates the model's predictions are relatively close to

the observed values, supporting a moderate fit. R Square Change 0.174. This shows that the model, with the inclusion of these predictors, adds 17.4% to the explained variance of Transf_trav_exp. F Change and Sig. F Change, F=13.226F=13.226F=13.226, p=.000p=.000p=.000. The F statistic is highly significant, indicating that the model is statistically significant as a whole and that at least one of the predictors is significantly related to Transf_trav_exp. The Durbin-Watson statistic of 1.241 suggests mild positive autocorrelation in the residuals. Values between 1.5 and 2.5 are generally preferred, so a value of 1.241 indicates slight dependency in the residuals. The model shows a statistically significant but modest ability to explain the variance in Transf_trav_exp (17.4%), with a moderate positive correlation between the predictors and the dependent variable. Conver_Intelli, Anthro, and possibly other predictors are likely contributing meaningfully, though the explanatory power remains limited, suggesting that additional or alternative predictors may further enhance the model's effectiveness.

Table 6: Spearman's Rho correlation matrix

Variables	Conver_Intelli	Inform_Qlty	Anthro	Inten_sear_Infor	Inten_book	Local_reside	Self_Assur	Disorie_dilem	Joy
Conver_Intelli	1.000								
Inform_Qlty	.854 ^{**}	1.000							
Anthro	.647 ^{**}	.637 ^{**}	1.000						
Inten_sear_Infor	.639 ^{**}	.640 ^{**}	.506 ^{**}	1.000					
Inten_book	.678 ^{**}	.669 ^{**}	.489 ^{**}	.777 ^{**}	1.000				
Local_reside	.223 ^{**}	.181 ^{**}	.362 ^{**}	.165 ^{**}	.225 ^{**}	1.000			
Self_Assur	-.034	-.092	.156 ^{**}	-.114 [*]	-.106	.775 ^{**}	1.000		
Disorie_dilem	-.025	-.116 [*]	.079	-.080	-.054	.653 ^{**}	.721 ^{**}	1.000	

Source: Authors analysis

Table 6 provides a correlation matrix that displays the relationships among various variables related to Artificial Intelligence (AI) and travel experience. Conversational Intelligence (Conver_Intelli) shows a strong positive correlation with Information Quality ($r=0.854, p<0.01$), indicating that higher conversational intelligence is associated with better perceived information quality. It also positively correlated to book ($r=0.678, p<0.01$) and the Intention to Search for Information ($r=0.639, p<0.01$), suggesting conversational AI significantly impacts tourists' intentions. Information Quality (Inform_Qlty) has a strong positive relationship with Joy ($r=0.654, p<0.01$), indicating that quality information from AI sources enhances tourists' enjoyment. Also positively correlated with anthropomorphism ($r=0.637, p<0.01$), suggesting that AI systems that feel more human-like may enhance the perception of information quality. Anthropomorphism (Anthro) positively correlated with Joy ($r=0.514, p<0.01$), meaning human-like qualities in AI can positively affect tourists' travel experiences. It also shows a moderate correlation with Local Residents and Culture ($r=0.362, p<0.01$), indicating that anthropomorphic AI can potentially enrich tourists' cultural experiences. Intention to Search Information (Inten_sear_Infor) positively correlated with Intention to Book ($r=0.777, p<0.01$), suggesting that tourists who search for Information via AI are also more likely to use it for bookings. Strong correlations with Conversational Intelligence ($r=0.639, p<0.01$) and Joy ($r=0.597, p<0.01$), indicating that information-seeking behavior is linked with both conversational AI and enjoyment. Intention to Book (Inten_book) has a high positive correlation with Intention to Search Information ($r=0.777, p<0.01$) and a moderate correlation with Joy ($r=0.556, p<0.01$), suggesting that booking intentions are closely linked with tourists' enjoyment and information-seeking actions. Local Residents and Culture (Local_reside) positively correlated with Self-Assurance ($r=0.775, p<0.01$) and Disorienting Dilemma ($r=0.653, p<0.01$), suggesting that experiencing local culture relates to tourists' confidence and occasional challenges they encounter. Self-assurance (Self_Assur) has a strong positive correlation with the Disorienting Dilemma ($r=0.721, p<0.01$), indicating that self-assurance and challenging experiences often go together. Negative correlation with Joy ($r=-0.210, p<0.01$), indicating that self-assurance might inversely relate to immediate enjoyment. Disorienting Dilemma (Disorie_dilem) shows a significant positive relationship with Self-Assurance and a negative correlation with Joy ($r=-0.189, p<0.01$), suggesting that dilemmas encountered during travel may decrease immediate enjoyment but potentially increase self-assurance. Joy positively correlated with Conversational Intelligence, Information Quality, Anthropomorphism, Intention to Search Information, and Intention to Book.

This correlation matrix highlights the role of AI features like conversational intelligence, information quality, and anthropomorphism in positively influencing travel experiences. Higher AI quality, conversational support, and human-like interactions correlate with increased tourist joy, intention to seek Information, and booking intentions, emphasizing the transformative potential of AI in enhancing travel satisfaction. Additionally, local culture and self-assurance show unique relationships with tourists' confidence and enjoyment levels, suggesting opportunities for a more culturally immersive and confidence-building

travel experience.

Discussion and Practical Implications

The analysis of AI constructs in enhancing travel experiences reveals several insights, including the influence of conversational intelligence, which demonstrates a strong positive correlation with information quality and intention to book, suggesting that AI-driven conversations improve information perception and drive booking decisions. This emphasizes the importance of conversational AI in shaping travellers' decisions and engagement. Higher information quality, facilitated by AI, is positively associated with tourists' joy, suggesting that credible, relevant Information enhances overall satisfaction. Additionally, anthropomorphic AI mimicking human characteristics boosts both joy and cultural engagement, implying that tourists value human-like interactions in AI, enhancing cultural connectivity and enjoyment. Strong correlations between the intention to search for Information and the intention to book highlight the AI-assisted decision-making process. Tourists who utilize AI for research are more likely to complete bookings, suggesting AI's crucial role in driving conversions. Local cultural experiences, though moderately correlated with AI aspects, strongly impact tourists' self-assurance and are often linked with "disorienting dilemmas" or moments of cultural adjustment. This finding suggests that cultural immersion provides enriching and challenging experiences, shaping confidence and deepening the travel experience. While AI-driven features like conversational intelligence and information quality contribute to joy, self-assurance shows an inverse relationship with immediate enjoyment. This suggests that self-assurance might stem from deeper, less immediately joyful experiences, such as navigating cultural dilemmas. The practical implications of the study state enhanced personalization through AI. Tourism service providers can utilize conversational AI and anthropomorphic features to create more engaging and human-like experiences. Providers may increase visitor satisfaction and booking rates by investing in AI that can interact naturally and answer tourists' questions effectively. Ensuring high-quality, accurate, and contextually relevant Information within AI platforms is essential. Tourism platforms should prioritize credible data sources and culturally sensitive Information to increase tourist satisfaction and joy, enhancing overall travel experiences. Service providers should consider designing AI experiences that foster cultural immersion while addressing potential disorientation challenges. AI can offer cultural context and guidance, enabling tourists to feel more assured and culturally aware, which is essential for a holistic travel experience. Insights into the strong link between information search and booking intentions suggest that targeted marketing campaigns within AI platforms could be beneficial. Tourism providers might implement recommendation systems and strategically place booking prompts, ensuring these align with tourists' information-seeking behaviors.

Conclusion

AI systems should be designed to adapt based on the user's journey stage. For instance, an AI could offer enjoyable experiences initially and then gradually introduce cultural and confidence-building experiences as tourists acclimate to their new surroundings. The Novelty of Study contributes to

the literature by uniquely examining the intersection of AI technology and tourism experiences in Bangalore, focusing on how AI attributes such as conversational intelligence, information quality, and anthropomorphism shape travellers' intentions, joy, and cultural immersion. By integrating psychological elements like joy and self-assurance with AI constructs, this research highlights AI's dual role in enhancing immediate enjoyment and fostering more profound confidence-building experiences. This analysis provides tourism stakeholders in Bangalore with novel insights into strategically utilizing AI to transform travel, creating memorable, culturally rich experiences for global explorers.

References

1. Amaro S, Duarte P. The impact of AI on customer experience in tourism. *Tourism Management*. 2021;84:104285.
2. Baker DM, Buhalis D, Rusu M. Artificial intelligence in hospitality and tourism: A review and agenda for future research. *Int J Contemp Hosp Manag*. 2021;33(6):2076-2100.
3. Buhalis D, Sinarta Y. Real-time co-creation and nowness service: lessons from tourism and hospitality. *J Travel Tour Mark*. 2019;36(5):563-582.
4. Buhalis D, Sinarta Y. Real-time co-creation and nowness service: Lessons from tourism and hospitality. *Tourism Management*. 2020;79:104122.
5. Gretzel U, Huang YC, Pesonen J. The changing role of tourism information sources: Towards interactive data-driven experiences. *Tourism Review*. 2021;76(1):1-13.
6. Gretzel U, Wang D. Special issue on travel and tourism. *J Inf Technol Tour*. 2018;18(2):145-148.
7. Han D, Fang Y, Qiu H. Virtual tourism in the post-COVID world: AI-enhanced AR and VR applications. *J Hosp Tour Technol*. 2020;11(4):611-633.
8. Huang J, Backman KF, Backman SJ, Chang L. Exploring the implications of virtual reality technology in tourism marketing. *Tourism Management*. 2016;57:167-178.
9. Ivanov S, Webster C. Adoption of robots, artificial intelligence, and service automation by travel, tourism, and hospitality companies. *Technol Soc*. 2019;58:101247.
10. Law R, Leung R, Au N. Importance of artificial intelligence in tourism. *J Hosp Tour Technol*. 2018;9(3):292-305.
11. Ling EC, Tussyadiah I, Liu A, Stienmetz J. Perceived intelligence of Artificially Intelligent Assistants for Travel: scale development and validation. *J Travel Res*; 2023. DOI: 10.1177/00472875231217899.
12. Murphy HC, Gretzel U, Pesonen J. From zero to hero: Experiences with virtual reality in tourism marketing. *Tourism Review*. 2021;76(5):1085-1099.
13. Pillai R, Haldorai K, Seo WS. Impact of artificial intelligence on the employment of travel agents. *Tour Econ*. 2021;27(4):837-854.
14. Soulard J, McGehee N, Knollenberg W. Developing and testing the Transformative Travel Experience Scale (TTES). *J Travel Res*. 2021;60(5):923-946. DOI: 10.1177/0047287520919511.
15. Tussyadiah IP. A review of technological approaches to AI and the future of travel. *J Travel Res*. 2020;59(7):1159-1178.
16. Jiang Y, Wen J. Chatbot perception in tourism: Applying the SOR model to understand the impact of anthropomorphic chatbot attributes on tourism satisfaction. *J Hosp Tour Technol*. 2022;13(2):150-168.
17. Kim D, Baker M. Beyond mere visual similarity: Anthropomorphism in tourism marketing and its impact on travelers' destination choice. *J Travel Res*. 2019;58(7):1117-1131.
18. Kuo C, Chen L, Tseng C. The development of an intelligent agent model for hotel customer service. *J Hosp Mark Manag*. 2017;26(1):1-19.
19. Li M, Law R, Zhang Z. The impact of AI and machine learning on the tourism industry: A bibliometric analysis. *Sustainability*. 2020;12(20):8706.
20. Mariani MM, Baggio R, Buhalis D. Business intelligence and big data in hospitality and tourism: A systematic literature review. *Int J Contemp Hosp Manag*. 2020;32(9):2813-2835.
21. Wang C, Law R, Guillet BD, Hung K, Fong DKC. Privacy risks and data security in artificial intelligence-driven tourism experiences: An exploratory study. *J Destin Mark Manag*. 2022;25:100656.
22. Xiang Z, Du Q, Ma L, Fan W. The impact of natural language processing on the tourism industry: AI-based applications and implications. *Tour Manag Perspect*. 2021;38:100812.